The Hottest HVAC Designs for the Coldest Climates: Decarbonizing through Ultra High Efficiency Electrification

Lukas Glaspell

...Leading to our 2030 Commitments

Gigaton Challenge

Reduce customer carbon footprint by 1 gigaton*

- Accelerate clean technologies that heat and cool buildings in sustainable ways
- Increase energy efficiency in buildings, homes and transport
- Reduce food loss in the global cold chain
- Transition out of high-Global Warming Potential Refrigerants

Design systems for circularity

Increase access to heating, cooling and fresh food

*1B metric tons of CO₂e

Leading by Example

Achieve carbon neutral operations

Deliver zero waste to landfills

Become net positive with water use

Reduce absolute energy consumption by 10%[†]

Opportunity for All

Achieve workforce diversity reflective of our communities

Achieve gender parity in leadership roles

Maintain world-class safety metrics

Provide market-competitive wages, benefits and leading wellness offerings for workforce

Invest \$100 million in building sustainable futures for under-represented students

Dedicate 500,000 employee volunteer hours in our communities

Pillars of Decarbonization

Energy Efficiency (

Reducing Indirect Emissions

(AKA Scope 2) are generally associated with emissions one step removed a customer's direct operations

Focusing on improving overall energy efficiency and reducing emissions in new construction and retrofits

Also referred to as "Clean Energy", which comes from natural sources or processes that are constantly replenished, such as solar and wind

Transition to low GWP refrigerants in HVAC equipment, and on-site management to minimize leaks

The process of

switching building

energy sources from

on-site fossil fuel to

electric sources

Electrification

Reducing Direct Emissions

Direct GHG emissions (AKA Scope 1) are those that occur from sources directly controlled by the customer

Refrigerant Management

Renewable Energy

Heat pump

- A heat pump with a reversing valve is a unit which allows the evaporator and condenser to switch roles by reversing the flow of refrigerant within the circuit.
- Heat pumps can come in a wide range of sizes and are available in water source and air source versions.

The future of heat is electric. Heat pumps provide heating or cooling from one reliable unit using a clean and renewable energy source.

SOURCE

120**º**F to heating load

Heat Pumps

What About Embodied Carbon?

Gas to Heat Pump Conversion Impact to GHG Reduction

* All water-cooled chillers may be referred to as water-to-water heat pumps

Hot Water Supply Temperature, Outdoor Air and COP

ASHRAE 90.1 Mininum Heating COP Heat Pump Chillers @17F & 47F 3.5 HWS= 105°F 3.25 3 HWS= 120° 2.75 Heating COP HWS= 140°F 2.5 2.25 2 1.75 1.5 1.25 1 0 5 10 15 20 25 30 35 40 45 50 Outdoor Temperature (F)

140°F hot water requires 35% more peak power and annual heating energy than 105°F

What is needed by the zone equipment?

Most equipment can be selected for space heating with 100-110°F Hot water 105F HWS Equipment Minimum Hot Water Supply Temperature **DOAS** Air Handler >80°F 95-105°F Central Air Handler/VAV Supply Air Mixed Air Single Zone VAV AHU 100-105°F 60F 95F VAV boxes (4 row) 95-105°F Hydronic Fan Coil Units w/ Changeover coil 100-115°F Changeover Coil

Electrified Systems – Heat Sources

Stored Energy

Where is the storage?

Solving Decarbonization Challenges with Thermal Batteries Cooling with Air-to-Water Heat Pump

Solving Decarbonization Challenges with Thermal Batteries Heating with Air-to-Water Heat Pump

Solving Decarbonization Challenges with Thermal Batteries Storage Source Heating - Thermal Batteries & Chiller-Heater

Solving Decarbonization Challenges with Thermal Batteries Cooling with Thermal Batteries

ASCEND® Air-to-Water Heat Pump

Model ACX(140 to 230 tons cooling, 1500 to 2500 MBh heating)

FEATURES

Built on Trane's Ascend chiller platform and Trane controls knowledge and expertise to provide consistent quality and reliability.

- Support of electrification of heat
- Ease of installation
- Simplified service
- Options: Integrated pump packages & sound-reduction packages, Drain pan

Operating Limitations		
Chilled Water	40 to 65F	0 to 125F Ambient
Hot Water	68 to 140F	0 to 95F Ambient
Max leaving at min ambient – 90F at 0F		

Thermafit[™] Modular Air-to-Water Heat Pump

Model AXM (30 tons cooling, 390 MBh heating)

FEATURES

Each module produces 30 tons cooling, 390 MBh heating. (300T bank) Expandable up to 10 modules. Provides all electric heating and cooling

- True redundancy
- Cold weather comfort (Vapor injection technology)
- Easy expandability
- Simplified service
- Small footprint
- **Options:** coated coils, compressor wraps, BMS Integration, Single frame / beam assembly

Operating Limitations		
Chilled Water	30 to 65F	0 to 115F Ambient
Hot Water	68 to 140F	0 to 95F Ambient
Max leaving at min ambient – 130F at 0F		

Next Gen Future ASHP

Thermafit™ Multipipe Unit

Model MWS (30 to 60 tons cooling, 1275 to 2690 MBh)

FEATURES

Thermafit multi-pipe units enable electric heating and cooling to get you one step closer to making net-zero goals happen and meet changing building codes and regulations for electrification.

- Ultra Efficient
- Simultaneous Heating and Cooling
- Single System to meet Varying Heating and Cooling Demands
- Electric Heating
- Fluids from Different Loops do not mix
- **Options:** Low sound

Operating Limitations		
Cooling only	Chilled water 54-44F	Source 85-95F
Heating only	Hot water 100-120F	Source 54-44F
Simultaneous	Chilled water 54-44F	Hot water 100-120F

Cascade Chiller Heater

20,000 to 35,000 heating MBh

R514A R1233zd District heating application

FEATURES

CVHH Booster product that is designed to deliver 180°F hot water for high-capacity district heating application.

- Available as Engineered-to-Order
- Lift capability: 145F
- Turndown: 25%
- High Temp CVHH can provide additional cooling in summer
- High Temp CVHH can be sold individually as boost
- Factory-installed Optional Features: 6 pipe heat recovery, Belzona coating, sacrificial anodes, CuNi tubes

Operating L	imitations.
Hot Water	Up to 180F
Chilled Water	38 to 65F

a oilon EXCERNO. EXERGY TRANE h oilon TRANE EXERGY 17ANE

Maximum condenser
temperature of +120°C (248°F)
Minimum Heat Source
temperature of -20°C (-4°F)
Refrigerants at and near 1 GWP

•Exergy heat pumps provide significant results for a wide variety of applications:

Heating in residential or commercial buildings
District heating
Heating industrial process

•Heating industrial processes

Domestic hot water delivery

High Temperature Hot water Booster

26

Efficiency and GWP Comparison

PastTransitionalLower
GWPUltra-Low
GWP

WET[™] System Operations (Heating Mode)

Noventa WET[™] System - Heating

Carbon Free Heating Solution

Heat is extracted from **wastewater** via the HUBER ThermWin[®] system to heat the building.

Significant reduction in **natural gas consumption from decreased** or eliminated boiler plant use.

2

Overall *COP of 4.5 (or higher)* as a result of less natural gas usage

City Wastewater System

Toronto Western Hospital (TWH)

Noventa INNOVATING TO DECARBONIZE OUR FUTURE**

Toronto, Canada

- Over 120,000 MBH of boiler capacity
- Over 6,800 tons of chiller capacity
- Integrate low-temperature hot water loop while maintaining existing steam infrastructure
- Provide >90% of annual space heating and cooling demand
- Over **10MW** of heating and **9MW** of cooling from wastewater
- Approximately \$685,000/year in energy savings
- Over 8,400 tonnes/year GHG reduction
- Over 11.8 million gallons of water saved per year

Trane Canada

Lukas Glaspell 525 Cochrane Dr. Markham ON L3R 8E3 647.991.9570 Lukas.Glaspell@trane.com

TECHNOLOGIES

Thermafit™ Heater/Heat Recovery

Model MWC and MWT (15 to 80 tons cooling, 216 to 1140 MBh)

FEATURES

Heat recovery reduces overall facility heating. Simply recover heat from the chiller, rather than reject it during the normal cooling process.

- Easy expandability
- Extreme flexibility
- Simplified service
- Small footprint
- Precise temperature control
- **Options:** VSD, Free Cooling, Low sound, Pump/Tank package

Operating Limitations		
Chilled Water	38 to 65F	
Hot Water	60 to 165F	
R410A, 42 F minimum LWT and 140 F maximum LWT		
R134a, ~ 70 F minimum LWT to get 175 F maximum LWT; at 42 F LWT, maximum 160 F LWT		

Series R® Heater/Heat Recovery

Model RTWD (80 to 250 tons)

FEATURES

Heat recovery offers an extremely energy efficient solution and a first step to electrifying heating.

- Reliability
- High Lift Versatility
- Precision Temperature Control
- **Options:** sound-reduction package

Operating Limitations	
Chilled Water	10F (-12C) to 65F
Hot Water	60 to 167F (75C)
Max lift 100F	

What if there is not enough reclaimable heat?

If the 24-hour design day heat load is more than the reclaimed heat, heat must be added to the system.

- Electric resistance will work but energy costs are high.
- Air-to-Water Heat Pumps have lower energy costs than electric resistance but more expensive upfront costs.

SSHP System* addresses these challenges, and more!

4.

5

- 1. Thermal Balancing
- 2. Space for heat pumps outdoors
- 3. Efficient use of heat pumps in colder climate

Sustainability

- Enables <u>elimination of fossil fuels</u> for heating to reduce carbon
- <u>Makes electrified heat pump</u> <u>heating possible in cold, dense</u> urban environments where there is limited roof space
- Optimizes carbon emission reductions based on when renewable energy is available
- <u>Adds Load Flexibility for Grid-Interactive Efficient Buildings</u> (GEB)
- <u>Avoids wasting water</u> required to reject heat through a cooling tower

Efficiency

- <u>Reclaims excess energy (heat)</u> from the building, stores and uses it to heat the building at other times
- <u>Captures other sources of thermal</u> <u>energy, above 32°F</u>, to be stored for later use (domestic wastewater, exhaust air, etc.)
- Collects ambient energy when temperatures are warm and when it is <u>beneficial to customer</u>
- Ice making COP during heating is much better than AWHP at very cold ambient temperatures

Reliability

Peak electrical demand and energy cost reductions \Box

Affordable, reliable solution for electrification

- Uses <u>stored heating until more</u> <u>favorable conditions are available</u> for AWHP operation such as extreme cold/defrost cycle
- <u>Backs up AWHP with stored energy</u> for 12-24 hours depending on system and economic parameters
- <u>Downsizes back up heating and power</u> sources such as electric boilers and generators
- Adds "Storage" to be <u>used as a Grid</u>
 <u>Resource</u>

Trane Thermal Battery[™] Storage Source Heat Pump System

American Geophysical Union (AGU)

Washington D.C. **Operational since May 2018**

- 7-storey structure and 62,000 ft² of refurbished office space
- Certified net-zero building by the U.S. Green Building Council
- RoK4-700 fine screen pumping station inserted in a shaft beside the sewer next to building
- Sewer flow rate of 6,400 GPM
- 1 RoWin[®] BG 8 heat exchanger installed
- The system provides 480kW of heating & 840kW of cooling
- Coefficient of Performance (COP) > 6

Residential Apartment Complex

Straubing, Germany Operational since 2010

- Low-rise apartment complex, 11 buildings
- Total units: 102
- Partial flow of wastewater (20 L/s) taken from main sewer running outside apartment buildings
- 2x HUBER RoWin® Heat Exchanger extract up to 210 kW thermal energy from the wastewater
- Energy savings of ~386,000 kWh/year
- Heat output of approx. 260 kW with heat pump
- Coefficient of Performance (COP) > 6

*Buffer tanks on the intermediate and hot water loops minimize unit cycling

*Buffer tanks on the intermediate and hot water loops minimize unit cycling