

New Design Resources for Embodied Carbon Targets

November 28, 2023

CLEAN AIR PARTNERSHIP Kelsey Saunders, Senior Building Science Consultant Rehanna Devraj-Kizuk, Passive House Project Manager

TODAY'S AGENDA

- 01 Whole Building Life Cycle
- 02 TMU x RDH Building Science
- 03 2023 Embodied Carbon Study
 - a. Project Overview
 - b. Methodology
 - c. Results
- **03 Key Takeaways**

WELCOME TO OUR SESSION!

Kelsey Saunders Senior Building Science Consultant RDH Toronto

Rehanna Devraj-Kizuk Passive House Project Manager RDH Toronto

Whole Building Life Cycle

We are in a climate crisis. How do we act as an industry?

CLIMATE CHANGE MITIGATION

- Reduce operational carbon emissions
- Reduce embodied carbon emissions

CLIMATE CHANGE ADAPTATION

- Consider future
 environmental loads
- Consider extremes

The buildings and construction industry represent around **37% of global operational energy and process-related CO2 emissions** (UNEP 2022). In Canada, between 2023 and 2050, **embodied carbon could represent over 90%** of_a new building's carbon emissions (CAGBC 2022).

Understanding the true and complete impact of buildings

2 Mitigate and Adapt.

CLIMATE CHANGE MITIGATION FOR BUILDINGS

- Reduce operating emissions
- Use low or zero carbon fuel sources
- Reduce emissions associated with building materials

CLIMATE CHANGE MITIGATION FOR BUILDINGS

- Reduce operating emissions
- Use low or zero carbon fuel sources
- Reduce emissions associated with building materials

CLIMATE CHANGE MITIGATION FOR BUILDINGS

- Reduce operating emissions
- Use low or zero carbon fuel sources
- Reduce emissions associated with building materials

CLIMATE CHANGE MITIGATION FOR BUILDINGS

- Reduce operating emissions
- Use low or zero carbon fuel sources
- Reduce emissions associated with building materials
 - Use fewer materials
 - Use materials with lower GHGintensity
 - Make the materials last as long as possible!

SCOPE OF THE STUDY – UPFRONT CARBON

NOD TO DURABILITY IN BUILDINGS

- Durable materials last ideally for the service life of the building
- Durable details prevent premature failure of components and assemblies
- Designing for durability minimizes material use over a buildings life cycle, and with that life cycle carbon emissions

GROUP.	CSA S478:19 National Standard of Canada Show Markup Toolbar
Durability in bu	uildings
R	
E	
	Standards Council of Canada Conseil canadien des normes
Generation Meridian's Copy (http://battochin/Prokidited)	

New standards and codes are coming into effect:

- CaGBC Zero Carbon Building Standard in place, voluntary
- Toronto Green Standard Version 5 is coming soon in ~2025
- National Building Codes 9.36 and NECB Embodied carbon is coming in 2030
- Proposed ASHRAE Standard 240P (tbd)
- City of Toronto targets all existing buildings retrofitted to net-zero by 2050

RDH x TMU

RDH + TMU spent the better part of 2022 and 2023 working hard to launch a comprehensive study of more than 25 wall and roof assemblies.

- RDH approached TMU to partner on this study in 2021 and kicked off with TAF funding in early 2022.
- Fit well with already approved and ongoing studies at TAF
- Use case: tool for early design stage life cycle assessment to inform decision making at a project and a policy level.
- Final guidance document and website resource now live! <u>LINK</u>

RESPONDING TO A CALL FOR ACTION

- "Carbon" is the new "Energy"
- Decisions made early in design have a major impact on the whole life cycle carbon of a building.
- Current standards addressing embodied carbon in buildings are a "report card."
- The industry needs accessible (read "simple") resources that support early stage enclosure design decisions to reduce upfront carbon
- The industry need more benchmark data to inform policies addressing the whole life cycle carbon balance point

Balance between Operational Energy Reductions & Embodied Carbon Emissions

Embodied Carbon Study

a. Project Overview

STUDY OVERVIEW

Key Objectives

- Define a standard methodology to calculate embodied carbon for enclosure assemblies
- 2. Establish the **embodied carbon metrics** for 26 enclosures
- 3. Develop **design support guidance**

Key Objectives

- Define a standard methodology to calculate embodied carbon for enclosure assemblies
- 2. Establish the **embodied carbon metrics** for 26 enclosures
- 3. Develop design support guidance

Outcomes and Deliverables

- **Open-source database** of results
- Cut sheets for each assembly, including
 - R values
 - Quantity Takeoffs
 - Embodied Carbon and Environmental Impact
- Guidance Document, detailing:
 - Applicable use cases
 - Comparative study of key enclosure materials
 - Key takeaways and lessons learned

STUDY USE CASES

 Provide designers with early-stage design information regarding the LCA impact of enclosure assembly type and the material within.

STUDY USE CASES

- Provide designers with early-stage design information regarding the LCA impact of enclosure assembly type and the material within.
- Assist in the development of embodied carbon targets for codes and standards development and/or references (baseline).

- Provide designers with early-stage design information regarding the LCA impact of enclosure assembly type and the material within.
- Assist in the development of embodied carbon targets for codes and standards development and/or references (baseline).
- Allow manufacturers to develop an understanding of context for their product, including meeting ever evolving demands for low carbon design choices.

- Provide designers with early-stage design information regarding the LCA impact of enclosure assembly type and the material within.
- Assist in the development of embodied carbon **targets for codes and standards** development and/or references (baseline).
- Allow manufacturers to develop an understanding of context for their product, including meeting ever evolving demands for low carbon design choices.
- Encourage manufacturers to **develop their product specific EPDs** that will allow designers to have greater choices of materials for their enclosure assemblies.

03 EMBODIED CARBON STUDY

b. Methodology

ENCLOSURE FIRST APPROACH

Building Enclosures are "Environmental Separators"

- choices affect both operating and embodied emissions
- long-term performance must be considered

Building Enclosure embodied emissions are complex

- there are many material choices, many reasons to choose them
- great variation between different building enclosure assembly options.

ASSEMBLY SELECTION METHODOLOGY

- 1. Set performance targets
- 2. Develop typical enclosure assemblies list based on industry experience
- 3. Build out assemblies based on clear wall effective R-value calculation

ASSEMBLY SELECTION METHODOLOGY

1. Set performance targets

- 2. Develop typical enclosure assemblies list based on industry experience
- 3. Build out assemblies based on clear wall effective R-value calculation

Performance Targets

- Walls R-25 (RSI-4.4)
- Roofs R-30 (RSI-5.3)
- Floors R-25 (RSI-4.4)

Nominal R-value

• Rated R-value of insulation layer only

Assembly R-value

• Nominal R-value + thermal resistance of other layers , assuming the assembly is 1D

Clear-wall R-value (Effective)

 Assembly R-value + two-dimensional effect of standard repetitive thermal bridging (steel, studs, cladding attachments...)

ASSEMBLY SELECTION METHODOLOGY

- 1. Set performance targets
- 2. Develop typical enclosure assemblies list based on industry experience
- 3. Build out assemblies based on clear wall effective R-value calculation

Performance Targets

Assembly selection

- Walls R-25 (RSI-4.4)
- Roofs R-30 (RSI-5.3)
- Floors R-25 (RSI-4.4)

- Commonly used assemblies (GTHA)
- Variety of materials
- New construction and existing building retrofits

BUILDING ELEMENTS

STUFF, difficult to predict SPACE PLAN, 3 to 30 years SERVICES, 7 to 15 years SKIN, 20 years STRUCTURE, < 60 years SITE, eternal

[Image from: How Buildings Learn, Stewart Brand, Penguin Books 1994]

ASSEMBLY SELECTION METHODOLOGY

- 1. Set performance targets
- 2. Develop typical enclosure assemblies list based on industry experience
- 3. Build out assemblies based on clear wall effective R-value calculation

Performance Targets

- Walls R-25 (RSI-4.4)
- Roofs R-30 (RSI-5.3)
- Floors R-25 (RSI-4.4)

Assembly selection

- Commonly used assemblies (GTHA)
- Variety of materials
- New construction and existing building retrofits

26 Assemblies Built

- 17 Walls
- 5 Roofs
- 4 Floors

WALL ASSEMBLIES

W01 Exterior Insulated CMU with Brick Veneer

W02

Split Insulated Steel Frame with Lightweight Cladding

W03

Split Insulated Steel Frame with EIFS (EPS)

W04

Exterior Insulated CLT wall panel with Aluminum Panel Cladding

W05

Cladding

W07 Doubly Wythe Insulated Precast with XPS Insulation

Split Insulated Wood

and Stone Veneer

Frame with Mineral Wool

W08 Spandrel Panel with 3" Mineral Wool Backpan, Interior Insulated with Mineral Wool

W09

Spandrel Panel with 3" Mineral Wool Backpan, Interior Insulated with Sprayfoam

W10

Insulated Metal Panel with Mineral Wool Insulation

W11 Insulated Metal Panel with Polyisocyanurate Insulation

W12 Architectural Precast with Mineral Wool Interior Insulation

W13 Architectural Precast with Spray Foam Interior Insulation

W14

W16

W17 Existing Masonry with **Exterior Aluminum Panel** Overcladding

ROOF ASSEMBLIES

R01

Conventional Roof with Polyiso on Metal Deck

R02

Protected Membrane Roof with XPS on Concrete Deck

R04 Existing BUR Roof Replacement over Polyisocyanurate Insulation

R05 Sloped Metal Roof Assembly

R03

Conventional Modified Bitumen Roof with Hybrid Insulation on CLT Deck

FLOOR ASSEMBLIES

F01 Parking Garage Concrete Ceiling with Vinyl-faced Mineral Wool

F02

Parking Garage Concrete Ceiling with Fire Resistant Spray Insulation

F03 Parking Garage Insulated Dropped Ceiling (Heated Plenum)

F04 Insulated Soffit with Mineral Wool

EMBODIED CARBON CALCULATION METHODOLOGY

- 1. Tool Selection
- 2. Quantity Takeoffs
- 3. Life Cycle Assessment (LCA)

1. Tool Selection

- 2. Quantity Takeoffs
- 3. Life Cycle Assessment (LCA)

OneClick LCA

- User interface
- EPD availability
- Comprehensiveness of LCA results

LCA DATABASES AND SOFTWARE

Life Cycle Inventory Databases

- EPD database: Environmental Product Declarations (constantly being updated)
 - Specific material produced by a specific manufacturer
- Generic Database:
 - Material data is based on industry averages

To use any of these tools:

- Project/building specific data required
 - Depends on software used and design phase (concept design vs construction documents).

EMBODIED CARBON CALCULATION METHODOLOGY

- 1. Tool Selection
- 2. Quantity Takeoffs
- 3. Life Cycle Assessment (LCA)

OneClick LCA

- User interface
- EPD availability
- Comprehensiveness of LCA results

Quantity Takeoffs

- Volume of materials for each component
- Function unit of 9 square meters of enclosure area

GUIDELINES FOR WHOLE BUILDING CALCULATIONS

The fundamental principle of an embodied carbon calculation is to multiply the quantity of each material by a carbon factor for the life cycle modules being considered[†]:

material quantity (kg) \times carbon factor (kgCO₂e/kg) = embodied carbon (kgCO₂e)

VOLUME OF MATERIALS CALCULATIONS

Calculate by material volume, or by material area

Category	Material (RDH specification)	Description (from EPD)	Thickness (mm)	Volume of material (m3)
Finish	Interior Paint	Eggshell acrylic paint, 1294.29 kg/m3		0.0014
Finish	Interior gypsum board	Gypsum plaster board, regular, generic, 6.5-25 mm, 10.7 kg/m2, (for 12.5 mm), 858 kg/m3	12.7 (0.5")	0.114
Interior finish support	Steel Stud Framing	Steel stud framing for drywall/gypsum plasterboard per sq. meter of wall area (incl. air gaps per m3); 63.5 mm x 30.5 mm, gauge 25	63.5 (2.5")	*
Back-up structure	Reinforced Concrete Block Masonry	Concrete masonry unit (CMU), normal weight, 2250 kg/m3 (Canadian Concrete Masonry Producers Association)	203.2 (8")	1.8
Exterior membrane	Vapour Impermeable Membrane	Latex-based membrane, vapor impermeable, fluid-applied, 40 mils (1mm), 1.15 kg/L, Perm-A-Barrier® NPL 10	1 (0.04")	0.009
Exterior insulation	Exterior Insulation Mineral Wool (Semi- rigid)	Heavy density mineral wool board, Industry average US (NAIMA), 1 m2K/W, 34 mm (1.3"), 4.2 kg/m2, 123.52 kg/m3	152.4 (6")	1.35
Exterior insulation	Insulation Pins	5 insulation pins per panel - 169 pins in total - Hot-dipped galvanised steel; 80% recycled content - 0.28 kg/m2	-	0.000302
Cladding anchorage	Stainless Steel Brick Ties	Assumed 4-foot spacing for angle support - 17 anchors in total - Composed from hot-dipped galvanized cold-formed steel, USA industry average, 7769 - 7849 kg/m3 (SFIA)	-	0.001
Cladding	Clay brick	Clay brick (Acme Brick Company, Belden Brick Company, etc.) 2120 kg/m3	90 (3.5")	0.81

EMBODIED CARBON CALCULATION METHODOLOGY

- 1. Tool Selection
- 2. Quantity Takeoffs
- 3. Life Cycle Assessment (LCA)

OneClick LCA

- User interface
- EPD availability
- Comprehensiveness of LCA results

Quantity Takeoffs

- Volume of materials for each component
- Function unit of 9 square metres of enclosure area

LCA

- A1 A3 lifecycle stages for a 60 year lifespan
- Generic and productspecific EPDs

LIFE CYCLE ASSESSMENTS

- Building Life Cycle Assessment is a standardized scientific methodology – it is not a set scope.
- Results are dependent on boundaries conditions - No two LCAs are the same.
- Embodied Carbon is typically calculated within an LCA -Global Warming impact category = Carbon Footprint

LCA BOUNDARY CONDITIONS

03 EMBODIED CARBON STUDY

c. Results

ONLINE DATABASE

RDH Making Buildings Better

NTACT LOCATIONS

WHAT WE DO - LEARN - ABOUT CAREERS BLOG

https://www.rdh.com/blog/embodied-carbon-resources-for-building-enclosures/

Key Takeaways

LIMITATIONS AND CHALLENGES

- During this study:
 - Lack of centralized life cycle inventory across platforms
 - Generic EPDs are sometimes unavailable
 - EPD's in general are difficult to source
 - Product specific information doesn't reflect a regional average
- Note on applicability:
 - EPDs represent the energy that went into manufacturing, very regionally specific!
 - Electrical grid in Ontario is clean, this is not the case everywhere.
 - Products where a significant portion of their energy used in manufacturing is electricity will be heavily grid dependent.

KEY TAKEAWAYS

- Industry need to rethink how we look at whole life cycle impact of buildings, balancing upfront and operational impacts – find the whole life carbon "balance point"
- Considerations are most effective when included in early design development, and must be influenced by local policies and standards
- Consider material durability and lifespan as part of whole life cycle carbon. This includes the durability impact of architectural details to mitigate future emissions for replacement and repair.
- Use less material and select materials with lower GHG-intensity.
- Simple form, lower glazing ratio and other important passive design strategies also tend to lend to lower life cycle emissions.

PUTTING THE STUDY TO USE

- Reference the data in the study and adapt it to your own use case
- Volume calculations and quantity takeoffs may be of most value
- Inform schematic level estimates of enclosurerelated embodied emissions early in decision making
- EPDs and later stage emissions will be project specific.
 - New EPD development
 - Specific products, specific locations
- Check out our new tool and provide feedback!
 - Is it useful to you?
 - If not, what is your use case and how can the tool be adapted to suit it?

bomer zwatr (🔍 eo			FORT	КТІS BC [*]			C C R	Create New Worksheet Copy to New Worksheet Reset Current WorkSheet			
Enhanced Therr	nal Perfo	rmano	e Spread Sheet	SI Units Change Units							
Clear Field Area Me	thod				Over	all Opaque	Wall Therm	al Perfor	mance V	alues/	
Select Area Calculation (Choose One)	Area	Units			Base Building			Proposed Buil		ilding	% Below Baseline
O Sum of Active Clear Field Areas (Default)	0.00	m²			Opac	que USI-Value (∀/m²K)	Enter Base Building U-Value	Opaque (¥/	USI-Value m²K)	-	-
C User Defined Area	Enter User Defined Opaque Area	m²			Effective RSI-Value (m²K/₩)		-	Effective RSI-Value (m²K/W)		-	
Proposed Building Entr	ies							Totals	0.0	0%	
Add/Remove Detail	Transmittance Type	Include	Transmittance Description	Area, Length or Amount Takeoff	Units	Transmittance Value	Units	Suurce Reference	Heat Flow (W/K)	%Total Heat Flow	
				Enter Area		Easter Class Field I					

W/K

Linear Interfa

Detail Point Interfac

dd Linear Interface Deta

Add Point Interface Deta

FUTURE WORK

- Inclusion of common glazing assemblies
- More attention given to retrofits
- Sensitivity analysis comparing options within each component type (insulation, cladding, back up structure, etc.)
- Impact of additional material at transitions (window perimeters, parapets, etc.)
- Optimization of whole building carbon reductions for electrified buildings – as thermal enclosure performance improves, so does embodied carbon!

THANK YOU! Questions? Let's talk.

Follow us on social

INSTAGRAM @rdhbuildingscience

LINKEDIN /rdhbuildingscience

