

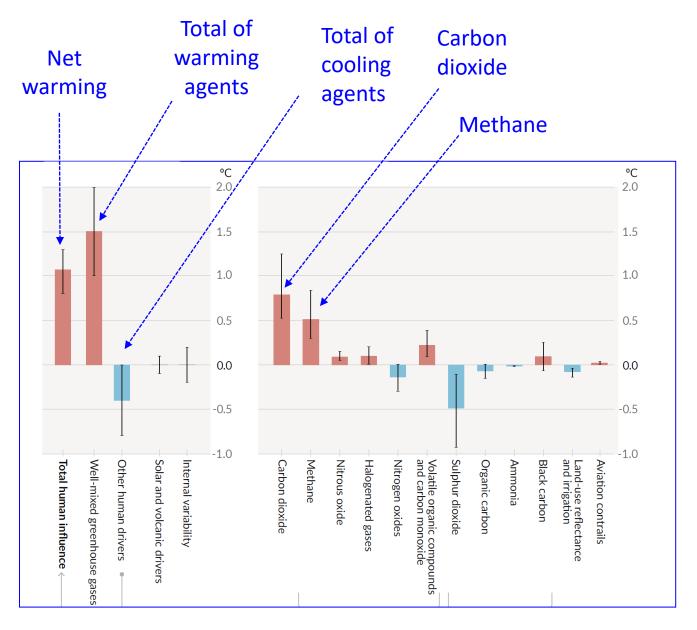
Cornell University College of Agriculture and Life Sciences

Methane Emission Mitigation by Municipalities

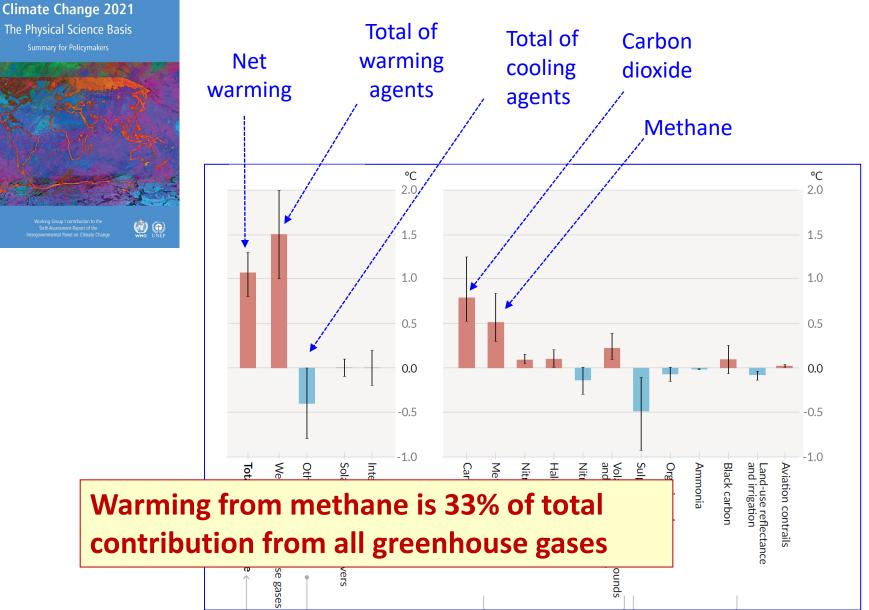
Robert Howarth

The David R. Atkinson Professor of Ecology & Environmental Biology Cornell University, Ithaca, NY 14853 USA

November 8, 2022


The Physical Science Basis

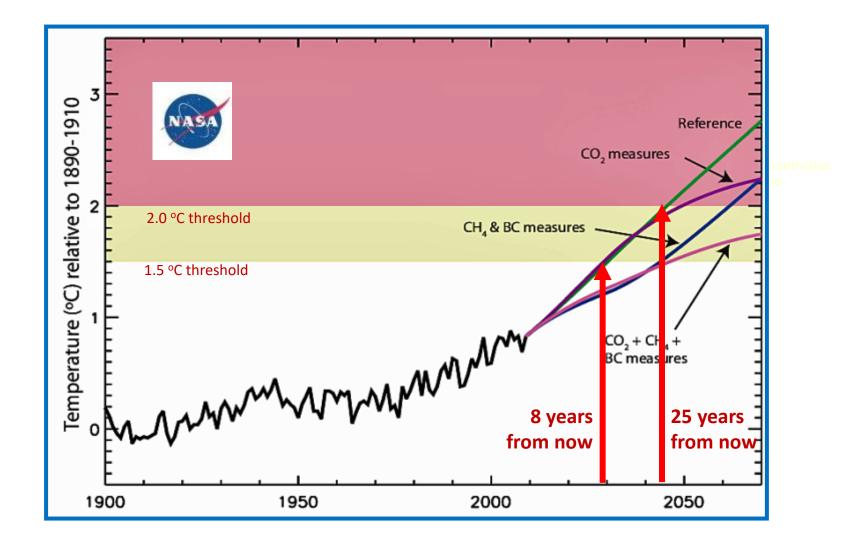
Climate Change 2021


WGI

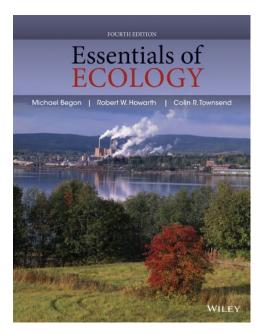
INTERGOVERNMENTAL PANEL ON CLIMPTE CHANGE

IDCC Average global temperature for 2010-2019 compared to 1850-1900

RGOVERNMENTAL PANEL ON CLIMATE CHANEE


COP21: United Nations Conference of the Parties Le Bourget, Paris -- December 2015

- COP21 Paris Accord target: "well below 2 deg C"
- Clear recognition that warming beyond 1.5 deg C is dangerous
- Methane reductions are critical; cannot reach COP21 target with CO₂ reductions alone



Shindell et al. 2012, Science

Global methane sources (Tg/yr), as of 1990 - 2000

Total	570
Total natural	220
Geological seeps	53
Biological sources	167
Total anthropogenic	350
Total anthropogenic Fossil fuels	350 115
Fossil fuels	115
Fossil fuels Animal agriculture	115 90

Begon et al. (2014)

August 2017

LETTER

nature

International journal of science

doi:10.1038/nature23316

Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event

Vasilii V. Petrenko¹, Andrew M. Smith², Hinrich Schaefer³, Katja Riedel³, Edward Brook⁴, Daniel Baggenstos^{5,6}, Christina Harth⁵, Quan Hua², Christo Buizert⁴, Adrian Schilt⁴, Xavier Fain⁷, Logan Mitchell^{4,8}, Thomas Bauska^{4,9}, Anais Orsi^{5,10}, Ray F. Weiss⁵ & Jeffrey P. Severinghaus⁵

Methane (CH₄) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions)¹ and top-down approaches (measuring atmospheric mole fractions and isotopes)² for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (¹⁴CH₄) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than $today^{3,4}$ our

atmosphere can only produce combined estimates of natural geological and anthropogenic fossil CH_4 emissions (refs 2, 12).

Polar ice contains samples of the preindustrial atmosphere and offers the opportunity to quantify geological CH₄ in the absence of anthropogenic fossil CH₄. A recent study used a combination of revised source δ^{13} C isotopic signatures and published ice core δ^{13} CH₄ data to estimate natural geological CH₄ at 51 ± 20 Tg CH₄ yr⁻¹ (1 σ range)², in agreement with the bottom-up assessment of ref. 1. This estimate, however, used δ^{13} C data that were affected by interference from krypton during mass spectrometry (see Supplementary Information section 9). Further, δ^{13} C offers only a weak constraint, because of uncertainties in past CH₄ emissions from biomass burning and in the source δ^{13} C signatures (Supplementary Information section 9). In contrast, ¹⁴CH₄ in the preindustrial atmosphere is the ideal tracer for constraining natural geological CH₄ because the ¹⁴C signatures of most CH₄ sources are very well defined. The ¹⁴C signature of CH₄ emitted from wetlands

August 2017

Minimal geological methane e Younger Dryas-Preboreal abr

Vasilii V. Petrenko¹, Andrew M. Smith², Hinrich Schaefer³, Katja Riedel³, Quan Hua², Christo Buizert⁴, Adrian Schilt⁴, Xavier Fain⁷, Logan Mitchell

mospl

nd ant Polar fers t

nthrop ource timat

owevei

uringi

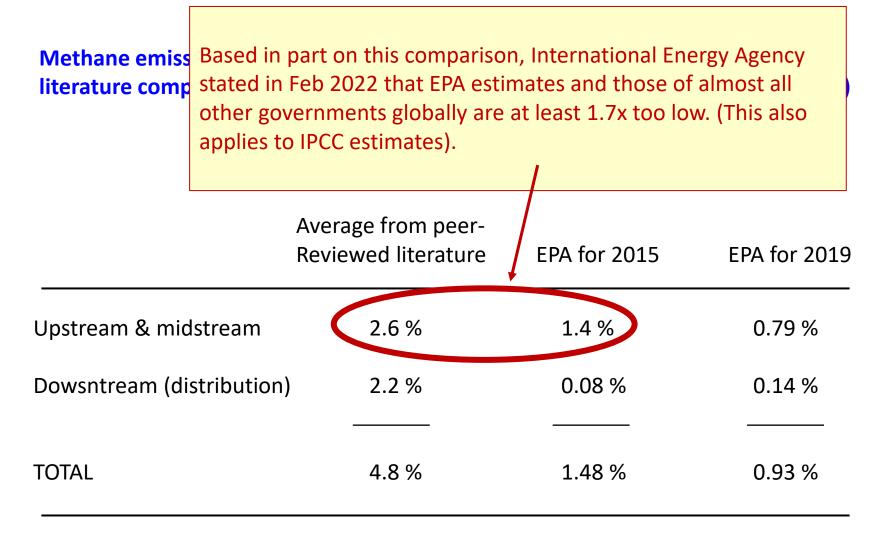
past

atural e verv

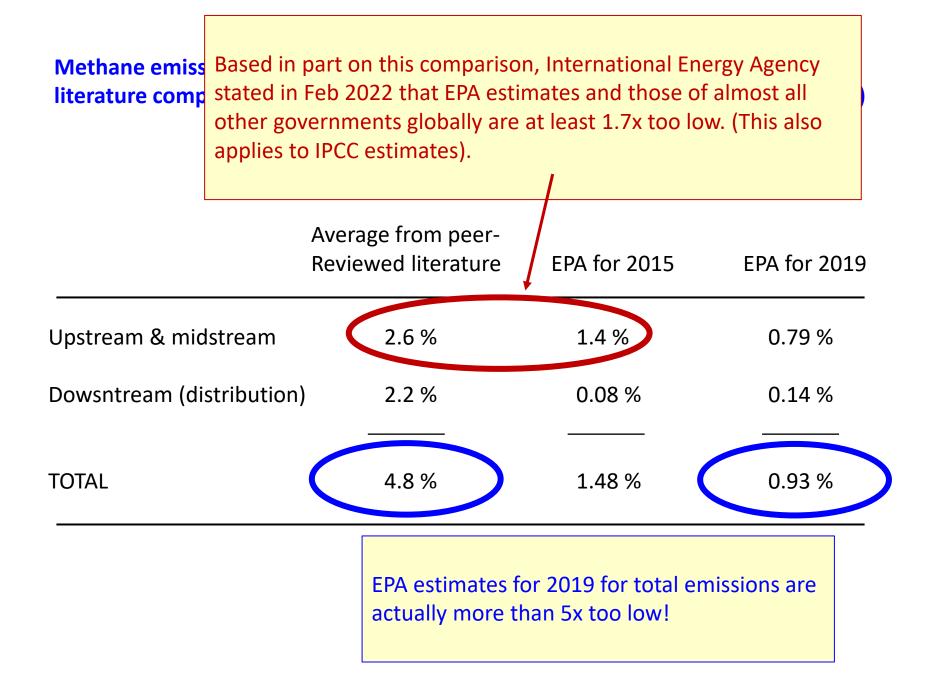
Measured C¹⁴ in ice laid down in Antarctica 11,500 years ago (1 ton of ice per sample).

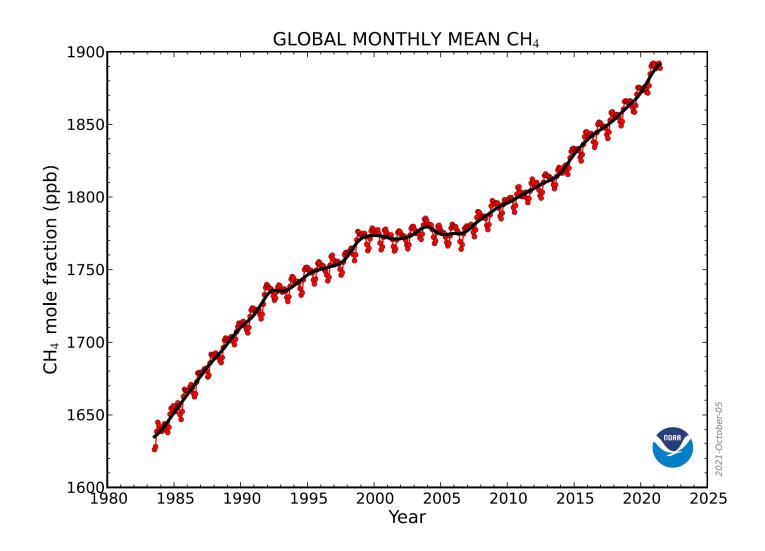
Indicates the methane from 11,500 years ago came from biological sources, not geological seeps.

Global methane sources (Tg/yr), as of 1990 - 2000


Total	570
Total natural	220
Geological seeps	0
Biological sources	220
Total anthropogenic	350
Fossil fuels	168
Animal agriculture	67
Animal agriculture Rice	67 44
~	

Based on Begon et al. (2014), modified March 28, 2018


Methane emissions from natural gas in the US: Preponderance of peer-reviewed literature compared to official US EPA estimates (based on industry self reporting)


	Average from peer- Reviewed literature	EPA for 2015	EPA for 2019
Upstream & midstream	2.6 %	1.4 %	0.79 %
Dowsntream (distribution) 2.2 %	0.08 %	0.14 %
TOTAL	4.8 %	1.48 %	0.93 %

Howarth, Dec 2022, EM Magazine

Howarth, Dec 2022, EM Magazine

Rapid rise in atmospheric methane globally since 2008

ATMOSPHERIC METHANE

A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by $^{13}CH_4$

Hinrich Schaefer,^{1*} Sara E. Mikaloff Fletcher,¹ Cordelia Veidt,² Keith R. Lassey,¹† Gordon W. Brailsford,¹ Tony M. Bromley,¹ Edward J. Dlugokencky,³ Sylvia E. Michel,⁴ John B. Miller,³ Ingeborg Levin,² Dave C. Lowe,¹‡ Ross J. Martin,¹ Bruce H. Vaughn,⁴ James W. C. White⁴

Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH₄] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH₄] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH₄ sink caused the [CH₄] plateau. Thermogenic emissions did not resume to cause the renewed [CH₄] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH₄ emissions must be balanced with the need for food production.

http://www.commun.comm

[CH₄] and δ^1 [CH4] plateau (Fig. 1) (3, 6, 7) have been studied sink parame with inverse models (top-down) (8-14), as well mode, this as process modeling (6, 8, 15-20) and emission measured [C estimates (bottom-up) (21-23). These approaches an event (pla are either not emission-specific or uncertain in ward, the so scaling and process representation (8). In contrast, "Stabilization the ${}^{13}C/{}^{12}C$ ratio in atmospheric CH₄ [$\delta^{13}C_{(Atm)}$; "perturbatio expressed in δ notation relative to the Vienna Pee strengthenir Dee Belemnite standard] is controlled by the prescribed p relative contributions from source types with ternatively,

High visibility paper published in March 2016 in *Science*: Increase in atmospheric methane since 2006 is most likely biogenic in large part, probably from cows.

indicate chang nent sources cultural, such

(biogenic); and burning (pyrog

freshwater and lack magnitud

hydrates (8)] o to force abru mentary mate OH sink may

whereas sub

unlikely or u

We recons

ries by splici firn air, archi

(Fig. 1, fig. S1

enrichment f

[CH₄] trends

plateau. Afte

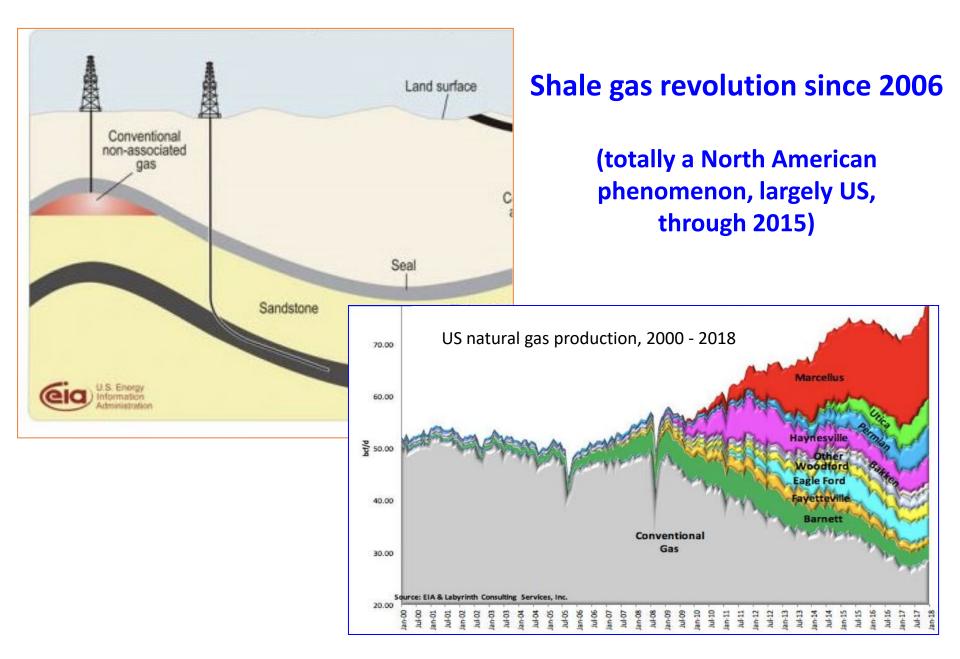
 $\delta^{13}C_{(Atm)}$ bec

gests that th

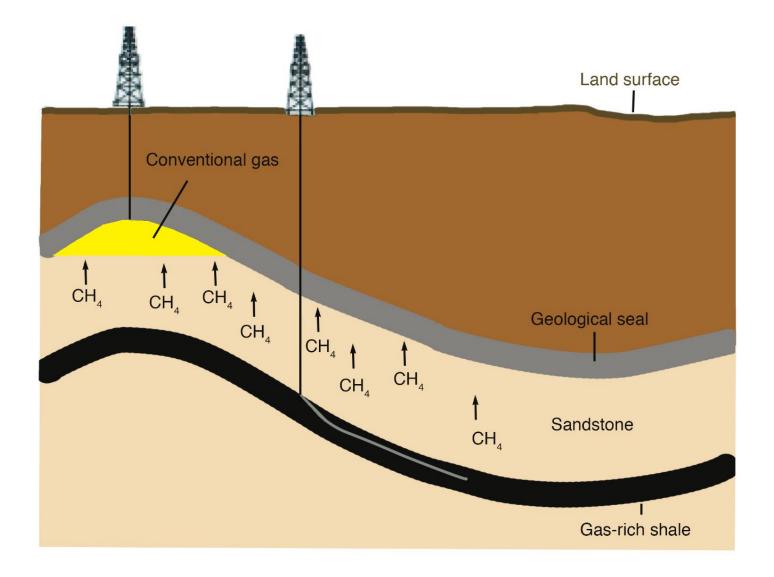
after the plat

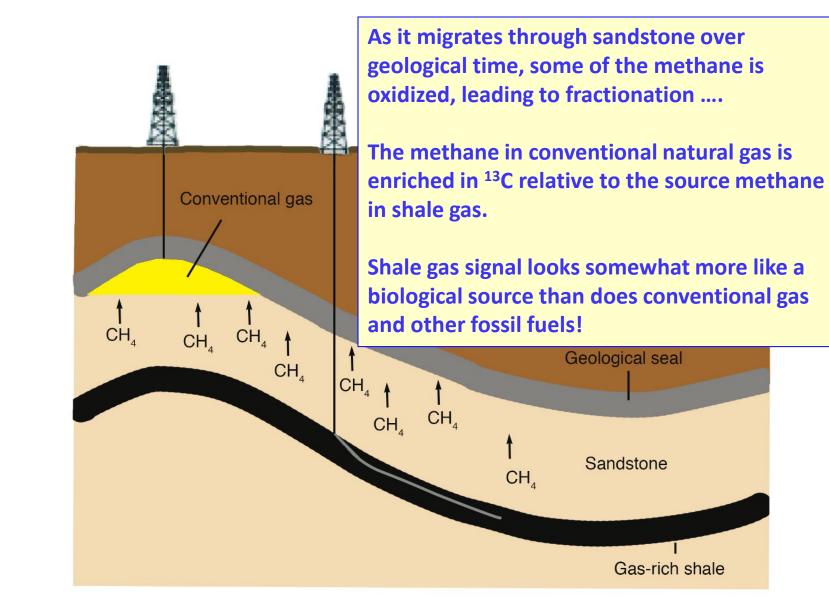
changes in t

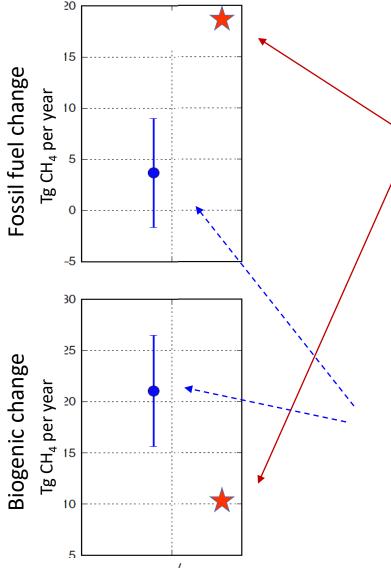
derives the l


and isotopic

We used a


Based largely on stable carbon isotopic composition (¹³C vs. ¹²C) in atmospheric methane.


July 2019

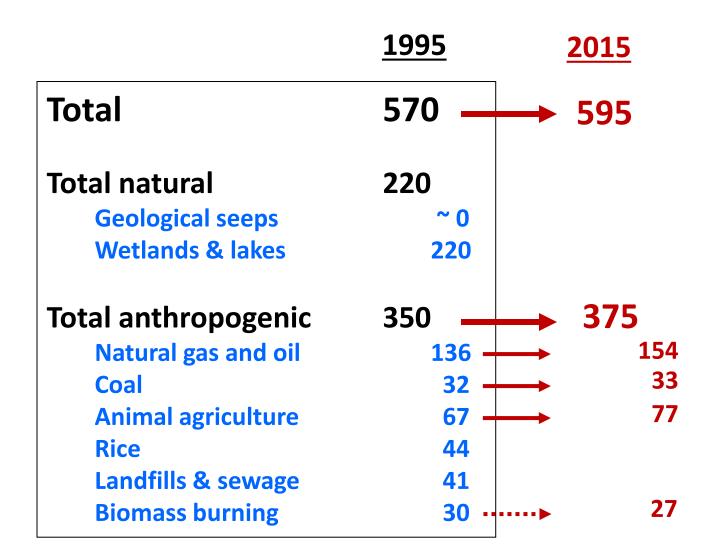

Jeremy Legget, Oct 2018: https://jeremyleggett.net/2018/10/16/history-of-oil-and-gas-production-from-shale-in-pictures-and-charts-why-american-shale-is-heading-for-a-crash-and-fracking-in-the-uk-is-doomed-to-costly-failure-2/

Howarth (2019)

Howarth (2019)

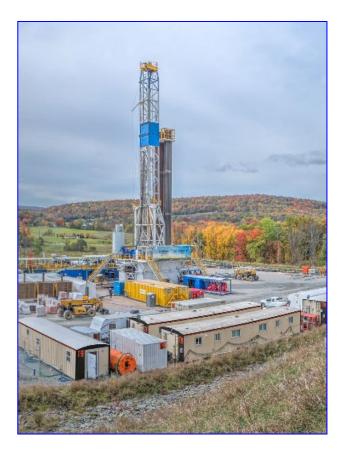
Howarth 2019 in *Biogeosciences*

Increase in emissions of 18 Tg/yr from fossil fuels (with half of this from US shale gas) and 10 Tg/yr from biological sources such as cows


(after correcting for biomass burning from Worden et al. 2017) and for ¹³C signal of shale gas)

Schaefer et al. 2016 paper in Science

Increase in emissions of 22 Tg/yr from biological sources such as cows and 4 Tg/yr from fossil fuels.


Adapted from Worden et al. (2017), with addition of Howarth (2019).

Global methane sources (Tg per year)

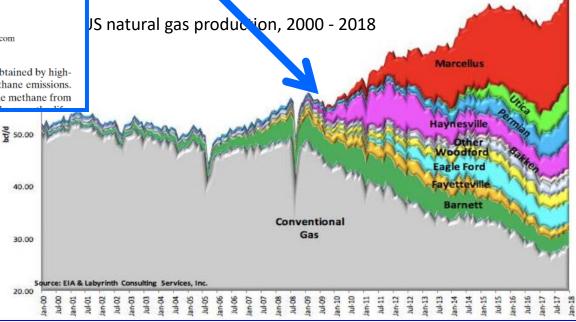
One "climate solution" proposed around 2000 was to use natural gas as a "bridge fuel." Replace coal with gas for generating electric power. CO_2 emissions decrease by ~ 40%, since gas generates more heat energy than coal per unit of CO_2 produced.

Eventually, move beyond the bridge to a fossil-fuel-free future....

Publication of first peer-reviewed paper on methane and the greenhouse gas footprint of shale gas (Howarth, Santoro, & Ingraffea 2011)

Climatic Change DOI 10.1007/s10584-011-0061-5

LETTER


Methane and the greenhouse-gas footprint of natural gas from shale formations

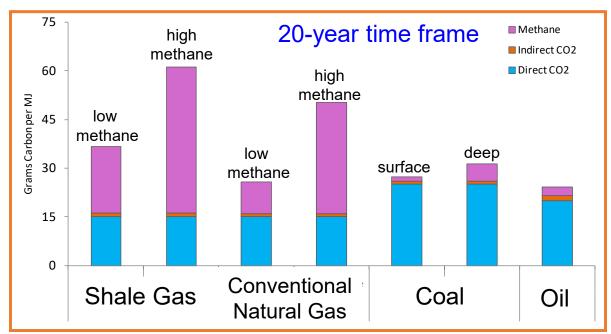
A letter


Robert W. Howarth · Renee Santoro · Anthony Ingraffea

Received: 12 November 2010 / Accepted: 13 March 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We evaluate the greenhouse gas footprint of natural gas obtained by highvolume hydraulic fracturing from shale formations, focusing on methane emissions. Natural gas is composed largely of methane, and 3.6% to 7.9% of the methane from

Jeremy Legget, Oct 2018: https://jeremyleggett.net/2018/10/16/history-of-oil-and-gas-production-from-shale-in-pictures-and-charts-why-american-shale-is-heading-for-a-crash-and-fracking-in-the-uk-is-doomed-to-costly-failure-2/



Climatic Change

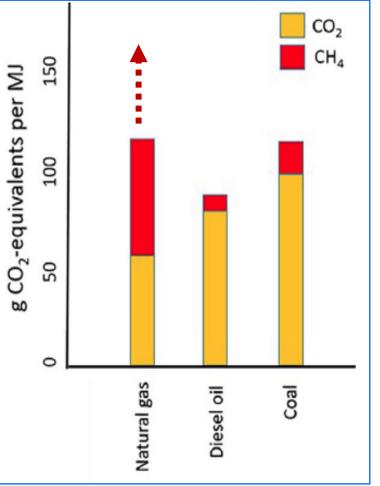
An Interdisciplinary, International Journal Devoted to the Description, Causes and Implications of Climatic Change

Co-Jahor: MICHAEL OPPENHEIMER GART TOHE

• Small leaks and emissions of methane matter

Ehe New York Eimes

Poking Holes in a Green Image


Tom Zeller April 11, 2011

"The old dogma of natural gas being better than coal in terms of greenhouse gas emissions gets stated over and over without qualification," said Robert Howarth, a professor of ecology and environmental biology at Cornell University and the lead author

"I don't think this is the end of the story," said Mr. Howarth, who is an opponent of growing gas development in western New York. "I think this is just the beginning of the story, and before governments and the industry push ahead on gas development, at the very least we ought to do a better job of making measurements."

The findings are certain to stir debate. For much of the last decade, the natural gas industry has carefully cultivated a green reputation, often with the help of environmental groups that embrace the resource as a cleanburning "bridge fuel" to a renewable energy future. More than a decade after our first 2011 analysis, now over 1,800 peer- reviewed scientific papers on methane from natural gas as a driver of climate change.

Considering both CO2 and methane
natural gas is no bridge fuel at all.Image: Considering both CO2 and methane
of the construction of the construction of

Modified from Howarth & Jacobson 2021

The natural gas as "bridge fuel" idea eventually died out.

Along the way, New York State banned fracking for shale gas (in 2014 by executive order, permanently by legislative action in 2020).

Yet natural gas use in New York has increased faster than any other state since the fracking ban....

..... Almost all of this is fracked shale gas from Pennsylvania.

Members of New Yorkers Against Fracking celebrated the governor's decision outside his Manhattan office on Wednesday. Chang W. Lee/The New York Times

By Thomas Kaplan

A Fossil-Fuel-Free Future for New York State, Powering with Wind, Water, & Sun to Address Global Warming, Air Pollution, & Energy Security

	Energy Folicy # (MMM) #M-4MM	
	Contents lists available at SciVerse ScienceDirect	IN ENER
	Energy Policy	
ELSEVIER	journal homepage: www.elsevier.com/locate/enpol	

Examining the feasibility of converting New York State's all-purpose energy infrastructure to one using wind, water, and sunlight

Mark Z. Jacobson^{**}, Robert W. Howarth^b, Mark A. Delucchi^c, Stan R. Scobie^d, Jannette M. Barth^e, Michael J. Dvorak^a, Megan Klevze^a, Hind Katkhuda^a, Brian Miranda^a, Navid A. Chowdhury^a, Rick Jones^a, Larson Plano^a, Anthony R. Ingraffea^f

Atmosphere/Energy Program, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA

Department of Ecology and Evolutionary Biology, Cornell University Ithaca, NY 14853, USA

-Institute of Transportation Studies, U.C. Davis, Davis, CA 95515, USA

⁴ PSE Healthy Energy, NY, USA

Pepacton Institute LLC, USA

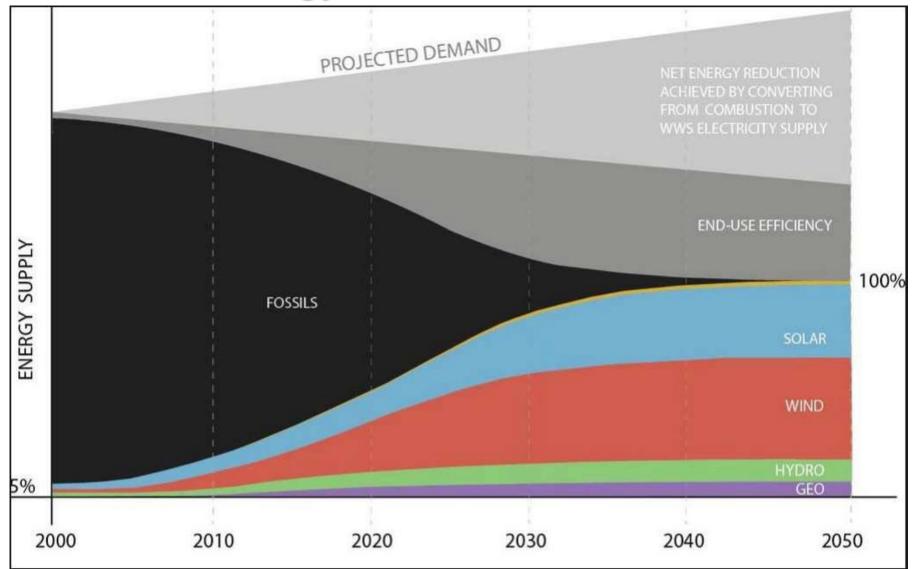
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA

HIGHLIGHTS

New York State's all purpose energy can be derived from wind, water, and sunlight.

- ► The conversion reduces NYS end use power demand by ~3/%.
- The plan creates more jobs than lost since most energy will be from in state.
- The plan creates long term energy price stability since fuel costs will be zero.
- ► The plan decreases air pollution deaths 4000/yr (\$33 billion/yr or 3% of NYS GDF).

ARTICLE INFO


ABSTRACT

Article history: Received 14 September 2012 Accepted 18 February 2013

Keywords:

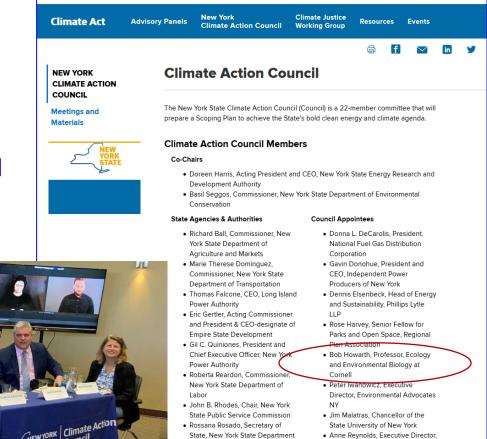
This study analyzes a plan to convert New York State's (NYS's) all purpose (for electricity, transporta tion, heating/cooling, and industry) energy infrastructure to one derived entirely from wind, water, and sunlight (WWS) generating electricity and electrolytic hydrogen. Under the plan, NYS's 2030 all purpose end use power would be provided by 10% onshore wind (4020 5 MW turbines), 40% offshore wind (12,700 5 MW turbines), 10% concentrated solar (387 100 MW plants), 10% solar PV

Our Energy Plan for New York State

Jacobson et al., Energy Policy, Feb. 2013

Our 2013 paper on a fossil-fuel-free future for New York helped lead to the Climate Leadership and Community Protection Act of New York (2019)

Kevin P. Coughlin/Office of Governor Andrew Cuomo


Climate Leadership & Community Protection Act (CLCPA) of 2019 mandates:

- New greenhouse gas accounting for methane
- 40% reduction in greenhouse gases by 2030
- 85% reduction in greenhouse gases by 2050
- 70% renewable electricity by 2030
- 100% C-free electricity by 2040
- At least 40% benefits to go to historically disadvantaged

Climate Leadership & Community Protection Act (CLCPA) of 2019 mandates:

- New greenhouse gas accounting for methane
- 40% reduction in greenhouse gases by 2030
- 85% reduction in greenhouse gases by 2050
- 70% renewable electricity by 2030
- 100% C-free electricity by 2040
- At least 40% benefits to go to historically disadvantaged

Establishes the Climate Action Council to develop policies for implementing.

- Alliance for Clean Energy New York
- Rava Salter, Lead Policy Organizer, NY Renews
- · Paul Shepson, Dean, School of Marine and Atmospheric Sciences at Stony Brook University

NEW YORK Climate Action Council	NEW YORK STATE OF OPPORTUNITY. Council

- State, New York State Department of State
- RuthAnne Visnauskas. Commissioner and CEO. New York State Homes and Community
- Renewal Howard A. Zucker, Commissioner, New York State Department of Health

New York's Climate Leadership & Community Protection Act of 2019 pioneers a new approach for including methane in greenhouse gas inventory for the State:

- 1) We take responsibility for all methane emissions associated with use of natural gas, no matter where the emissions occur;
- 2) We compare methane to carbon dioxide over a 20 yr time period following a pulse emission (before, a 100-yr time period was used, and is still used by all other states, the US government, and virtually all other nations..... Which severely understates the warming and climate disruption caused by methane).

Marie French @ @m_jfrench 10h Changing the way planet-warming gasses are accounted for may sound like a yawn but we're seeing as New York makes policy that it has a HUGE impact on what levers in what sectors have to be pulled to meet reduction targets - and thus, implications for how fast the planet warms

Politico reporter, Twitter – April 20, 2022

- Compare methane to CO₂ over 20-yr time period (not 100-yr)
- Emissions outside of NY included if related to consumption of fuels in NY

Percentages of Total Greenhouse Gas Emissions for New York State in 2019 by Sector

Buildings	36%
Transportation	27%
Electricity	16%
Waste	12%
Agriculture	5%
Industry	4%

Inclusion of methane accounting under CLCPA gives much heavier emphasis on buildings, electricity, waste, and agriculture Modified from DEC inventory:

3.6% emission from natural gas (rather than 2.89%)

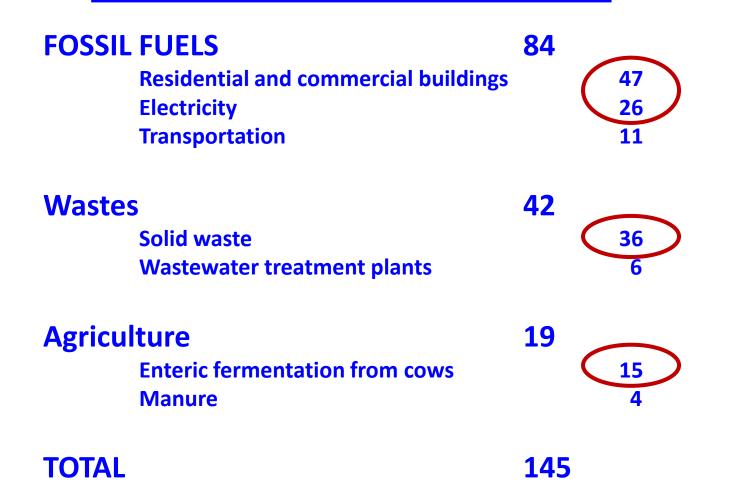
Oil & gas industry estimate apportioned to natural gas use in buildings & electricity

New York State Methane Emissions, 2019

(million metric tons CO₂-eq per year)

FOSSIL	FUELS Residential and commercial buildings Electricity	84	47 26
	Transportation		11
Waste	S	42	
	Solid waste		36
	Wastewater treatment plants		6
Agricu	lture	19	
	Enteric fermentation from cows Manure		15 4
TOTAL		145	

(37% of all greenhouse gas emissions)

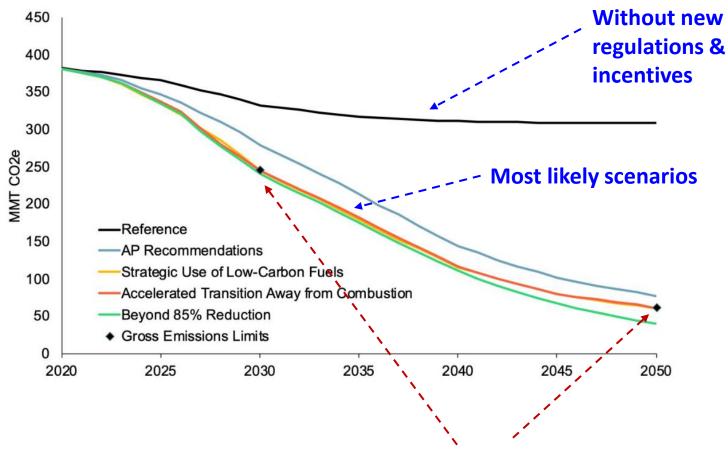

Modified from DEC inventory:

3.6% emission from natural gas (rather than 2.89%)

Oil & gas industry estimate apportioned to natural gas use in buildings & electricity

New York State Methane Emissions, 2019

(million metric tons CO₂-eq per year)



(37% of all greenhouse gas emissions)

Modified from DEC inventory:

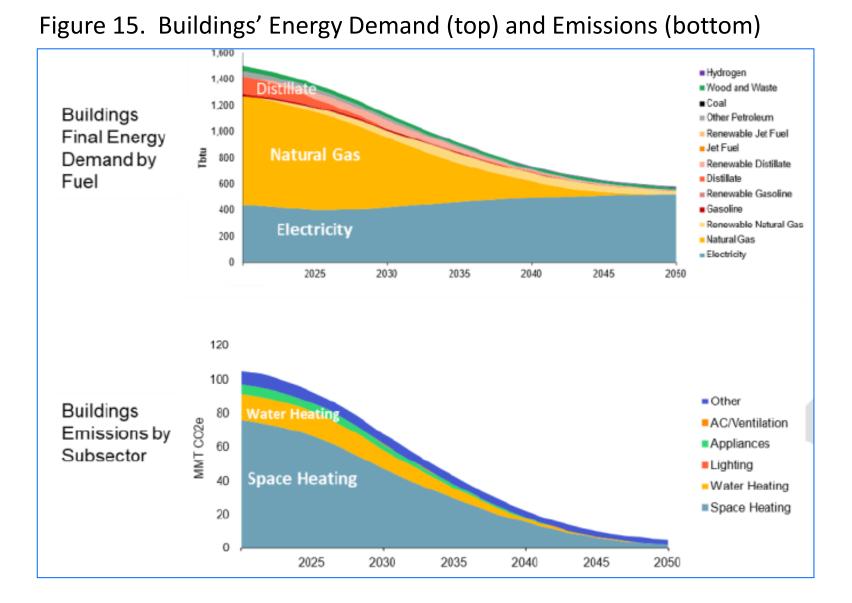
3.6% emission from natural gas (rather than 2.89%)

Oil & gas industry estimate apportioned to natural gas use in buildings & electricity NY Climate Action Council draft implementation plan – Future Greenhouse Gas Emissions

Targets required by law

For buildings:

- Prohibit gas & other fossil fuels in new single-family homes & lowrise residential (3 stories or less) construction by 2024 (2025?)
- Prohibit gas & other fossil fuels in large residential & all commercial building construction by 2027 (2028?)
- Undertake aggressive retrofitting of gas & other fossil fuel appliances with heat pumps & inductive stoves, starting in 2022 (2 million homes by 2030, out of total of 6 million single-family homes currently heated with fossil fuels in NY)
- "Strategically downsize" (dismantle) the gas distribution system, in an orderly way, from 2024 through 2045
- Encourage community-scale ground-source heating where appropriate.


Heat pumps extract heat from environment (from air or groundwater), gaining 2.7 to 5 times more heat energy than electric energy consumed.

My home (1890's farm house) is 100% carbon neutral, with ground-source heat pump (since 2014) and renewable electricity.

Climate Action Council –draft of implementation plan (scenario #3)

Briefing for the White House Office of Science & Technology Policy, May 27, 2016

Office of Science and Technology Policy Dr. John Holdren President's Science Advisor

Best way to reduce methane emissions from natural gas?

- Eliminate gas as a fuel as quickly as possible.
- Prohibit flaring & venting, but with independent verification (not industry self reporting).
- Urban delivery pipeline systems? Resources better spent on replacing gas than on fixing gas infrastructure.

The Methane Project at Cornell University

Questions?

The Methane Project at Cornell is funded by the Park Foundation and by an endowment given to Cornell by David R. Atkinson.

Further information available at Howarthlab.org