Clean Energy Technology and Disinformation

Mark Z. Jacobson Stanford University **Climate Solutions Webinar Clean Air Partnership** May 11, 2022

Why Not Carbon Capture?

Coal Plant With CCU Powered by Natural Gas

Units: kg-CO ₂ e/MWh	20 yr	100 yr
a) Upstream CO ₂ and leaked CH ₄ from coal	450	237
b) CO ₂ from stack	931	931
c) CO ₂ captured from stack by equipment	516	516
Percent of stack CO ₂ captured (c/b)	55%	55%
CO ₂ e emitted by natural gas mining+combustion	367	283
e) Captured CO ₂ e not returned to air by natgas (c-d)	149	233
Percent CO ₂ e reduction realized e/(a+b)	10.8%	20%

CCU attached to coal plant reduces only 11-20% of CO₂e it is expected to over 20-100 y

Change in CO₂e and Social Cost in 3 CCU Cases

1st case coal-No-CCU; 2nd: Coal-CCU powered by natural gas;

3rd : Coal-CCU powered by wind; 4th: replace coal with wind

Blue=upstream coal non-CH₄ CO₂e; Orange=coal upstream CH₄ CO₂e; Red=coal CO₂; Yellow=nat gas CO₂;

green=Natgas CO₂e from CH₄ leaks; Purple=other natgas upstream CO₂e;

Light blue=elec+CCU cost; Brown=air pol cost; Black=climate cost

Summary of CCS/U

- Using natural gas to run coal-CCU reduces CO₂e only 11.8-20% over 20-100 years while increasing air pollution and mining 25% and incurring a CCU equipment cost
- Using wind to run coal-CCU reduces CO₂e only 34-44% while keeping air pollution and mining the same, while incurring equip cost
- Using same wind to replace coal reduces CO₂ emissions, air pollution emissions, and mining 49.7% and has no CCU equipment cost

Why Not Blue or Gray Hydrogen?

Efficient Applications of Green H₂

- Long-distance vehicles (airplanes, ships, trains, trucks, military vehicles)
- Steel production, some other industrial processes
- Electricity and heat in remote microgrids
- Not for stationary electricity storage, building heat, or passenger vehicles

Blue vs. Gray Hydrogen: Main Assumptions

- Use of steam methane reforming, SMR (vs. autothermal reforming, ATR)
- Leakage rate 3.5 (1.54 to 4.3)%
- Carbon dioxide capture rate for pure stream from SMR: 85 (78.8-90)%; flue gas: 65%
- 20-year GWP (100-year also examined)

Howarth and Jacobson (2021)

Base Case Results

Blue Similar to Gray H₂ Emissions; Both Greater Than Green

- Gray hydrogen (H₂ from steam reforming with no carbon capture): 153 g-CO2eq/MJ
- Blue hydrogen (H₂ from steam reforming with carbon capture) with mining, heat, and capture equipment powered by fossil fuels: 135-139 g-CO2eq/MJ
- Burning natural gas for heat: 111 g-CO2eq/MJ
- Blue hydrogen powered by renewables still emits 52 g-CO₂eq/MJ and requires natural gas mining + storing CO₂
- Green hydrogen (H₂ by electrolysis): 0 g-CO2eq/MJ and no natural gas mining or air pollution

Howarth and Jacobson (2021)

ATR Vs. SMR

- ATR produces 2 hydrogen molecules per methane; SMR produces 4
- ATR can get 2.9 by reacting waste carbon monoxide with steam, which requires more equipment and energy
- ATR requires pure oxygen to be separated from air, requiring more equipment and energy
- To reduce carbon dioxide capture needs, energy for heat and oxygen separation can be obtain with hydrogen fuel cell, requiring more equipment
- -> ATR always results in 38-100% more methane leaks and upstream pollution
- CO₂ from ATR can be captured more efficiently, but more CO₂ produced

Howarth and Jacobson (2021)

Why Not Synthetic Direct Air Carbon Capture and Storage?

Opportunity Cost of SDACCS

- WWS energy technologies do the same thing as SDACCS
 - Prevent carbon from getting into air rather than remove it

But WWS also eliminates or reduces

- a) non-CO₂ air pollutants from fossil combustion
- b) upstream fuel mining and pollution
- c) pipeline, refinery, gas station, etc. infrastructure
- d) oil spills, oil fires, gas leaks, gas explosions
- e) International conflicts over energy
- f) Blackout risk by decentralizing power

Direct Air Capture Powered by Natural Gas

Units: kg-CO ₂ e/MWh	20 yr	100 yr
a) CO ₂ removed from air	825	825
b) CO ₂ e from natural gas upstream returned to air	334	165
c) CO ₂ from natural gas combustion returned to air	404	404
d) Net CO ₂ e reduced due to natural gas (a-b-c)	87	256
Percent of removed CO_2 e that stays removed (d/a)	11%	31%

→Natural gas-powered DAC reduces a net of only 11-31% of CO2e that is captured over 20-100 years.

Direct Air Capture Powered by Wind

Units: kg-CO ₂ e/MWh	20 yr	100 yr
a) CO ₂ removed from air	825	825
b) CO ₂ e from running equipment returned to air	0	0
c) CO ₂ e reduction due to wind (a-b)	825	825
Percent of removed CO ₂ e that stays removed (c/a)	100%	100%

→Wind-powered DAC reduces 825 kg-CO₂e/MWh, but it does not reduce air pollution or mining of coal, and it incurs both a DAC equipment and wind equipment cost.

Wind replacing coal, removes more CO₂e as well as air pollution and mining...

Replacing 100% of Coal Plant w/Wind (no DAC)

Units: kg-CO ₂ e/MWh	20 yr	100 yr
a) Upstream+stack coal CO ₂ e before replacing	1,381	1,168
b) Upstream+stack coal CO ₂ after replacing	0	0
c) CO ₂ e reduction due to wind (a-b)	1,381	1,168
Percent of CO ₂ e reduction realized c/a	100%	100%

→ Replacing coal with wind reduces more CO₂e (1,381 to 1,168 versus 825 kg-CO₂e/MWh) than using DAC powered by wind and also reduces coal air pollution and mining at no DAC equipment cost (same wind cost).

Change in CO₂e and Social Cost in 3 DAC Cases

1st case: no change; 2nd: Use SDACCU powered by natural gas;
3rd: Use SDACCU powered by wind; 4th: replace coal with wind

Why Not New Nuclear Power?

Issues With Nuclear

- 1) Produces 9-37 times more CO₂e and pollution per kWh than wind
- 2) Takes 10-19 yrs between planning & operation vs 0.5-5 yrs for wind/solar
- 3) Costs 4-5 x that of onshore wind/utility PV
- 4) \rightarrow Takes 2-38 times longer to obtain 1/4rd to 1/5th the CO₂ savings per dollar than wind/solar.
- 5) IPCC 2014: P. 517. "Robust evidence, high agreement" that increased use of nuclear leads to more
 - (a) Weapons proliferation risk
 - (b) Meltdown risk
 - (c) Waste risk
 - (d) Mining risk

Nuclear Planning-to-Operation Times

	Construction Time (years)	Plan-to-Operation Time (years)
Olkiluoto 3 (Finland)	17	22
Hinkley Point (UK)	8-9	18-19
Vogtle 3 and 4 (US)	10-11	17-18
Flamanville (France)	16	19
Haiyang 1 and 2 (China)	9	13-14
Taishan 1 and 2 (China)	10-11	12-13
Ringhals (Sweden)		10-18

Nuclear Versus Wind CO₂e Emissions

	Nuclear (g-CO ₂ e/kWh)	Onshore Wind (g-CO ₂ e/kWh)
Lifecycle	9-70	7-10.8
Opportunity cost	64-102	0
Anthropogenic heat	1.6	-1.7 to -0.7
Anthropogenic water vapor	2.8	-0.5 to -1.5
Weapons proliferation risk	0-1.4	0
Covering land	0.17-0.28	0.0003
Total	78-178	4.8-8.6

Ratio of nuclear to wind

9-37:1

Why Impossible for Nuclear to Solve Warming

- 1) We can allow 500 GT-CO₂ after 2020 to stay below 1.5 °C warming
- 2) Eliminating 80% emissions by 2030; 100% by 2050 emits \sim 340 GT CO₂
- 3) This requires reducing today's emissions ~10%/year from 2023-2030
- 4) A new nuclear plant proposed today requires 10-19 yrs until it operates. Wind/solar need 0.5-3 years.
- 5) →Impossible for nuclear to avoid 1.5 °C warming; possible for WWS

Why Not Biomass For Electricity or Heat?

Sources of Biomass Energy

- Agricultural residues e.g., straw, livestock waste
- Forestry residues e.g., bark, woodchips, forest thinning logs
- Energy crops
 - Dry wood crops e.g., willow
 - Herbaceous crops e.g., switchgrass
 - Oil energy crops e.g., sugar beet
 - Starch energy crops e.g., corn
- Wood, food industry residues e.g., sawdust
- Park and garden waste e.g., grass
- Contaminated waste e.g., municipal waste

Biomass Versus Wind CO₂e Emissions

	Biomass (g-CO ₂ e/kWh)	Onshore Wind (g-CO ₂ e/kWh)
Lifecycle	43-1,730	7-10.8
Opportunity cost	36-51	0
Anthropogenic heat	3.4	-1.7 to -0.7
Anthropogenic water vapor	3.2	-0.5 to -1.5
Covering land	0.09-0.5	0.0003
Total	86-1788	4.8-8.6
	Ratio of biomass to wind	10-373

Bioenergy With Carbon Capture & Storage (BECCS)

Requires 25 to 50 percent more energy

 \rightarrow 25 to 50 percent more air pollution

Air pollution already high from biomass combustion

Need CO₂ pipelines

Few storage locations available

→Coupled with enhanced oil recovery
 Increases fertilizer use by removing agricultural residues
 High cost → opportunity cost
 Biomass combustion efficiency only 20-27%

Why Not Liquid Biofuels For Transportation?

Types of Biofuels

- Ethanol (E10, E85, E100)
 - Corn
 - Sugarcane
 - Cellulosic
- Butanol
- Biodiesel (B100)
 - Soy
 - Algae

CO₂ Emissions and Air Pollution Deaths BE/HFC Vehicles Versus E85 Vehicles

Spacing Area For BE/HFC Vehicles Versus E85 Vehicles

Area to Power 100% of U.S. On-road Vehicles

Book on 100% WWS

https://web.stanford.edu/group/efmh/jacobson/WWSBook/WWSBook .html

Paper on Carbon Capture and Direct Air Capture

https://web.stanford.edu/group/efmh/jacobson/Articles/Others/19-CCS-DAC.pdf

Paper: How Green is Blue Hydrogen

https://onlinelibrary.wiley.com/doi/full/10.1002/ese3.956

Twitter: @mzjacobson