Net Zero New Construction Design: Toronto Paramedic Services Multifunction Paramedic Station

Agenda

- 1. Land Acknowledgement
- 2. Introductions:
 - 1. City of Toronto
 - 2. Diamond Schmitt gh3
- 3. Net Zero / TGS Version 4
- 4. Presentation by Diamond Schmitt gh3
- 5. Question & Answers

Land Acknowledgement for Toronto

We acknowledge the land we are meeting on is the traditional territory of many nations including the Mississaugas of the Credit, the Anishnabeg, the Chippewa, the Haudenosaunee and the Wendat peoples and is now home to many diverse First Nations, Inuit and Métis peoples. We also acknowledge that Toronto is covered by Treaty 13 with the Mississaugas of the Credit.

Introductions

Host:

Panelists:

Net Zero / TGS Version 4

Net Zero by 2040

On December 15, 2021, City Council adopted the TransformTO Net Zero Strategy, an ambitious strategy to reduce community-wide greenhouse gas (GHG) emissions in Toronto to net zero by 2040 – 10 years earlier than initially proposed

Leading by Example

"All City Agency, Corporation and Division-owned new developments are designed and constructed to applicable Toronto Green Standard (TGS) Version 4 standard achieving zero carbon emissions, beginning in May 2022"

Toronto Paramedic Services Multifunction Paramedic Station

300 Progress Ave, Toronto

Toronto Paramedic Services Multifunction Paramedic Station

- Performance targets
- Building design
- **Analysis and responses**
 - **Unique challenges/solutions**

TARGETING ZERO EMISSIONS & NET ZERO ENERGY

Proposed NZEE Building	EUI 139.1 (kWh/m2)	TEDI 39.4 (kWh/m2)	GHGI 5. (kg CO2e/m2)
SB-10 Building Benchmark Building	297.6	156.5	34.6
TGS Tier 2 Baseline Building	190.5	63.2	16.0

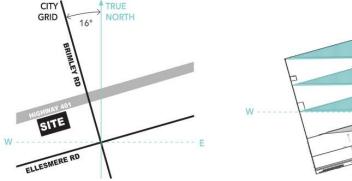
For supporting & additional info please refer to submitted Net Zero Energy & Emissions Feasibility Study.

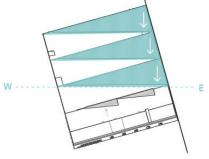
.

TORONTO PARAMEDIC SERVICES MULTIFUNCTION PARAMEDIC STATION

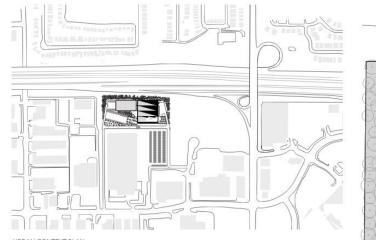
Along the McDonald Cartier Expressway in Scarborough, Ontario, a suburban industrial area populated with big box store retail, a new building emerges, identifiable even at high speeds. A roof form, optimally angled and rotated for solar orientation, creates a dramatic profile silhouetted above the trees and announces a building of prominence and significance. Scarborough's new Multifunction Paramedic Station, targeting Zero Emissions and Net Zero Energy, is reducing embodied energy with a mass timber structure. A direct response to energy requirements resulted in a design specific to this building type and to this site, while creating a sculpted profile visible from high-speed traffic on the McDonald Cartier Expressway.

This project goes beyond the city's mandate of zero emissions to propose an exemplar – a signal to the rest of the emergency divisions and the city at large – that stringent energy and program objectives are not misaligned with aesthetic design ideals. A unified architectural idea developed from net-zero strategies, and became a framework for site position, landscape design, cladding materials and building form. Design is intrinsically tied to performance in terms of orientation, capacity, operation, and material on both the interior and exterior of this project. The dramatic roof supporting photo-voltaic arrays, optimally sloped for solar capture, also enables clerestory windows, allowing natural light to all interior spaces, and projecting light as a lantern at night when the building is seen along the adjacent highway. The cladding and wall design absorb heat and the layout of pedestrian and vehicular entries maintains that heat. The building is designed for operational efficiency, and this is leveraged for the comfort and wellbeing of the many staff and employees who work in this post-disaster facility, all year and around the clock.



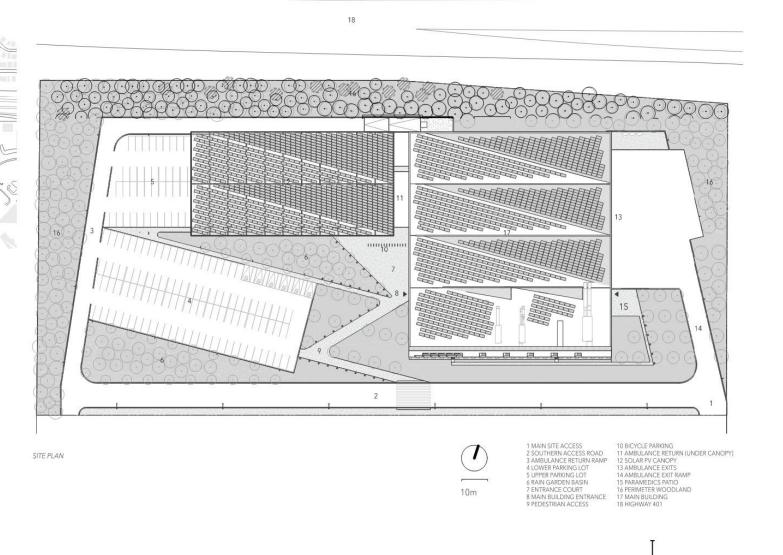

The unique location of this site, between an existing police facility and Highway 401, presents an opportunity to create a distinct design that is visible from the local area and to drivers on the highway, signaling that compelling architecture and landscape strategies can distinguish an otherwise overlooked site. This design embraces the inherent challenge of merging intense programmatic functionality with a mandate for net-zero energy use on a remnant site in a largely suburban area east of downtown Toronto.

Finding the Light - Optimizing solar gain was a primary organizing principle for the site design, building placement and orientation. The building's footprint aligns with Highway 401 and the orthogonal grid of the surrounding streetscape. However, the urban grid of the Greater Toronto Area is shifted 16° off of true north. To maximize solar gain, this 16° rotation is 'reversed', introducing a secondary geometry that directs the building's roofscape to face south, the ideal positioning for the photo-voltaic arrays.



CITY

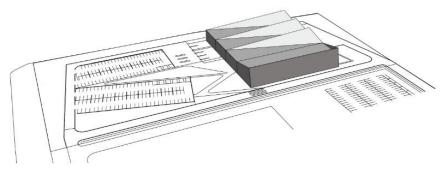
GRID

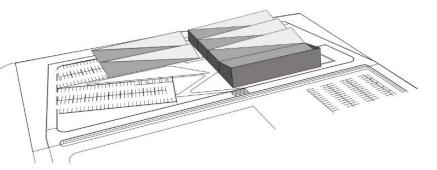

GTA GRID ORIENTATION vs TRUE NORTH

URBAN CONTEXT PLAN

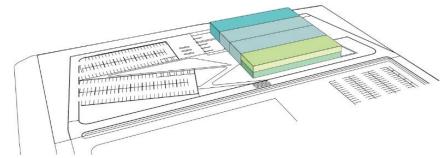
SITE ORGANIZATION

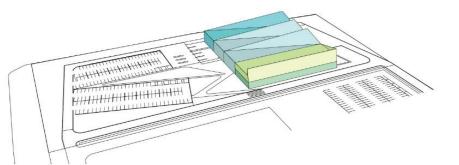
The angles derived from the 16° roof line rotation extend into the landscape in form and function with roof drainage feeding large rain garden detention basins that punctuate the site with distinct swaths of native trees and shrubs in shapes that complement the building form. The building program, with its required vehicular infrastructure, including parking, ramped driveways and large-bay garages is nestled within a native Carolinian Forest perimeter. Iterative consultation between architects, engineers, landscape architects and energy experts enabled a site and building design that is innovative in its expression of energy efficiency and environmental resilience.




URBAN CONTEXT SECTION (N/S)

4. FINAL BUILDING FORM UNIFIED WITHIN A SINGLE SKIN




5. PV CANOPY ADDED TO NORTHERN PARKING LOT

2. PRINCIPAL PROGRAM DISTRIBUTION

3. ROOFSCAPE MANIPULATED FOR DAYLIGHTING AND PV ARRAYS

1. BASE BUILDING MASSING

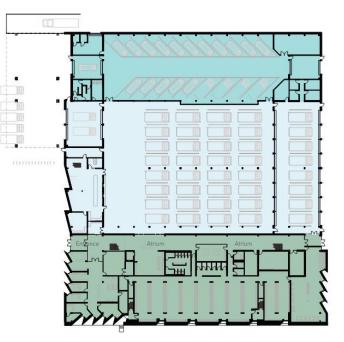
The large form required to accommodate the building program is broken into 4 principal bays, each relating to the primary functional areas of the brief as follows: AMBULANCE BAYS & LOGISTICS SUPERVISOR VEHICLE BAYS & LOGISTICS

MASSING & PROGRAM DISTRIBUTION

SUPERVISOR VEHICLE BATS & LOC

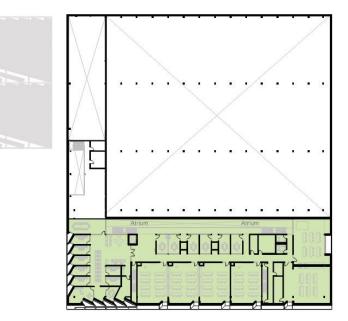
PARAMEDICS & DISTRICT 2 HUB

EDUCATION & ADMINISTRATION



PHYSICAL ORGANIZATION, MASSING & FORM

The functional requirements of an emergency facility of this type are stringent and required input and consultation from administrators and future building users. Access to natural daylight was a priority as reflected in the generous apertures in the walls and the clerestory fenestration facilitated by the tilted roofscape.


Organized around a linear atrium, the building consists of vehicle bays to the north and an adjacent administrative and education block to the south. The vehicle bays contain spaces for 40 ambulances and 20 supervisor vehicles, with support spaces for logistics technicians. The District 2 Hub is strategically placed near the principal entrance on the ground floor of the administrative block, adjacent to the atrium, key drop and logistics area. From the atrium, paramedics can access the vehicle area, the command post, offices, the parade room, a kitchen and lounge, a flexible meeting room, lockers for 700 staff and visitors, showers, fitness facilities and stairs to the second floor.

Continuing education, recruitment, and special training programs take place on the second floor, with learning spaces that can be configured as four separate classrooms or one larger space for events. Two labs, one of which includes the rear of an ambulance, provide space for hands-on training. Six seminar rooms and administrative spaces round out the program. Support spaces are designed for use by on-duty and limited duty paramedics. Recognizing the stress and challenges of being a first responder, the lobby, lounge, seminar and meeting rooms are generously sized for paramedics to use while in reduced assignments.

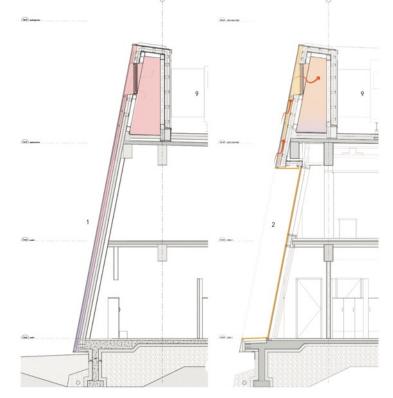
MAIN LEVEL PLAN

AMBULANCE BAYS & LOGISTICS SUPERVISOR VEHICLE BAYS & LOGISTICS PARAMEDICS & DISTRICT 2 HUB EDUCATION & ADMINISTRATION

SECOND FLOOR PLAN

ENVIRONMENTAL PERFORMANCE

Performance targets for energy efficiency shaped the design strategy for this building.

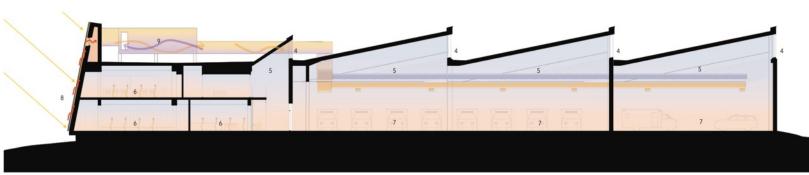

Seven critical steps were necessary to meet the targets:

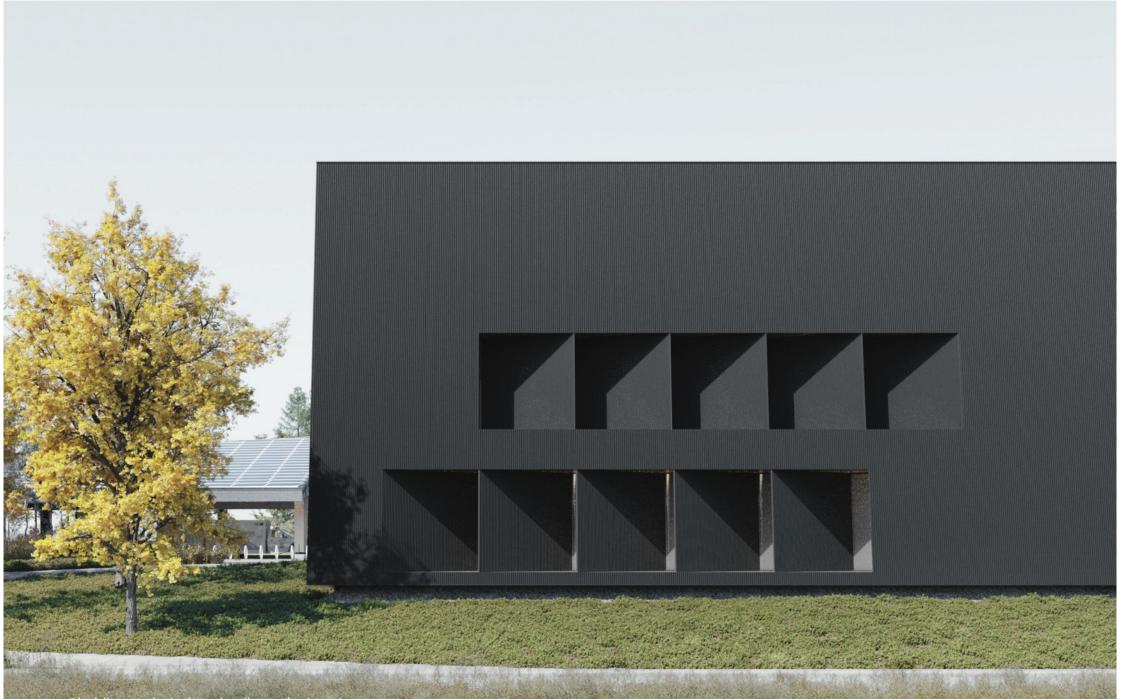
- 1. a very high-performance building envelope;
- 2. triple glazing;
- 3. a well calibrated window to wall ratio;
- 4. interior daylighting through clerestories;
- 5. decoupled ventilation;
- hydronic floors to heat and cool the building from geothermal wells, and;
- 7. displacement ventilation throughout.

But in this building type, those measures only achieve 70% of the goal: the design must also address losses through the 12 overhead vehicle doors and heat required to temper the large volumes of make-up air for the vehicle bays. For the overhead doors, interior vestibules were introduced on both sides of the vehicle bay, the first ambulance facility in Canada to do so. This design feature conserves 15% of the entire building's energy.

Architectural Expression - The DNA of the building is informed by the tilt of the south facing solar wall (8), which conserves a further 15% of the entire building's energy. Fresh air is warmed by the south sun on the dark metal cladding, rising into energy recovery ventilators (ERVs) on the roof (9). The ERVs deliver the heated air to the vehicle bays through low level displacement ventilation cabinets. High level return air ducts draw air back to the rooftop ERVs, using latent heat to further preheat incoming air.

The building is on track to achieve an energy use intensity (EUI) of 139, a remarkably low number for this type of facility. The project is a signal to designers and clients that it is possible to have provocative design that is informed by energy systems.




SECTION THRU SOLAR WALL (NTS)

SECTION THRU VERTICAL WINDOW (NTS)

PART ELEVATION OF SOLAR WALL

BUILDING SECTION - ENERGY SYSTEM

INNOVATION

Mass timber columns and beams together with CLT decking are used throughout the building to reduce embodied carbon. Since we are targeting CaGBC Net Zero Carbon certification, the design team performed an embodied carbon analysis, using a typical structural bay in the vehicle area of the project.

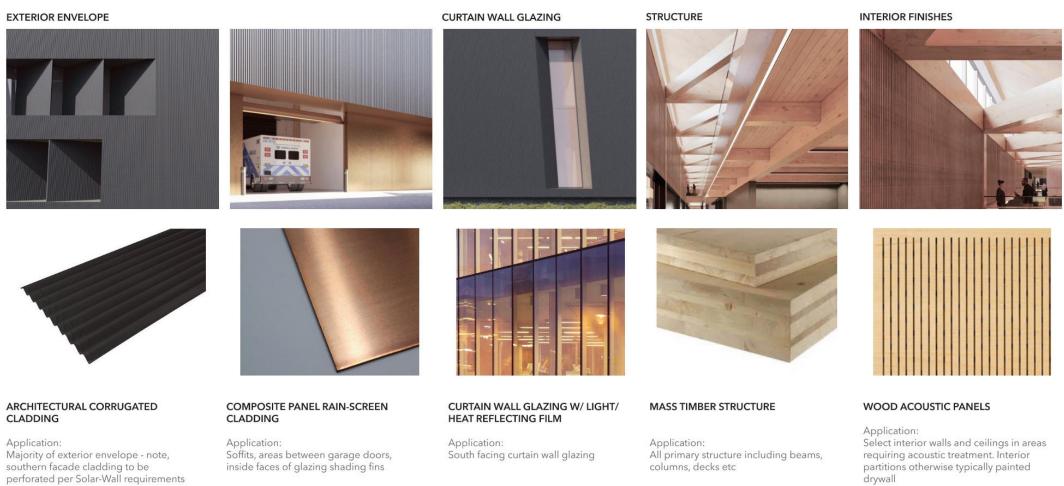
We compared the embodied carbon of the steel design from the SD stage to the current timber design, and found that, even while excluding the impact of sequestered carbon in the wood structure, there was a 34% savings in CO2e in a timber superstructure compared to a steel superstructure. When the effects of CO2 sequestration in the wood are included, the reduction in CO2 is 233%.

While the overarching principles for the project result from an intense understanding of energy requirements, the building is fundamentally designed for the first responders that will use it as their second home. A calming environment and a sense of respite from hectic job demands is fostered by the integration of interior amenity zones with access to natural daylight and views of the rich four-season planting as well as adjacent canopy-protected exterior landscape spaces.

The building is organized to be socially and spatially equitable, and inherently inclusive for visitors, staff, and administrators alike. As with all aspects of the project, the environmental mandate was leveraged to meet multiple ambitions, in this case to create positive and architecturally uplifting spaces for people.

MASS TIMBER PRIMARY STRUCTURE AXONOMETRIC

Embodied Tonnes CO2e per typical bay in vehicle garage		% Reduction vs steel	
Steel Structure	31.8		
CLT/Glulam Structure (assume no carbon storage in wood)	21.1	34%	
CLT/Glulam Structure (assume full carbon storage in wood - sustainably managed forests etc)	-423	233%	


EMBODIED CARBON ANALYSIS

MAIN BUILDING ARCHITECTURE - MATERIALS & SPECIFICATIONS

Soffits, areas between garage doors, inside faces of glazing shading fins

All primary structure including beams, columns, decks etc

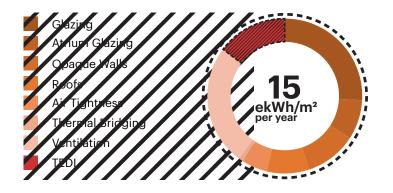
drywall

Approaching Zero

approaching net zero

The second

understand TEDI, GHGI, EUI


Losses

What is TEDI?

The annual heat loss from the building envelope and ventilation. This is the amount of heating energy delivered to the project, per unit of gross floor area. It's used to ensure resilient buildings and improve both occupant comfort and thermal energy performance. TEDI measurement is ekWh/m²/year.

What is A Good TEDI Score?

A good TEDI is dependent on the climate zone that your building is in. As an example, a great target is from the Zero Carbon Framework in the figure to the right. Toronto Green Standard (TGS) has a list of minimum TEDI targets in accordance with building typology. There is more information on the city website. Passivehouse has even more aggressive TEDI targets to achieve.

Losses

So You Want a Low TEDI?

A One Page Document on Thermal Energy Demand Intensity

What is TEDI?

The annual heat loss from the building envelope and ventilation. This is the amount of heating energy delivered to the project, per unit of gross floor area. It's used to ensure resilient buildings and improve both occupant comfort and thermal energy performance. TEDI measurement is ekWh/m²/year.

What is A Good TEDI Score?

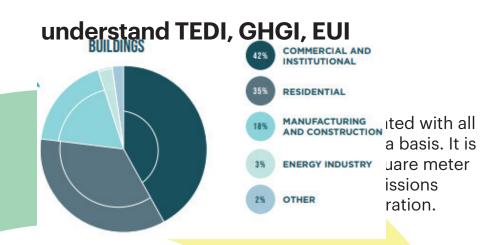
A good TEDI is dependent on the climate zone to your building is in. As an example, a great target is from the Zero Carbon Framework in the figure to the right. Toronto Green Standard (TGS) how list minimum TEDI targets in accordance with uildir typology. There is more information on the city website. Passivehouse has even more aggress targets to achieve.

How Can I Lower my TEDI Score?

Want the best TEDI? These are help you lower your TEP 1. Shape of Your 2. Reduce Your 3. Implement 4. Increase Em e Performance 5. E iminate 🌓 al Bridging 6. Increase Yo Tightn Why is TEDI Ho 1. Reduces Energy Sz 2. Increases Resilience 3. Improves User Comfort 4. Reduces Perimeter Heat

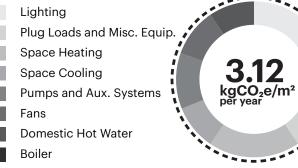
diamond schmitt

	Wall Losses (23%)	mation Losses (6.	.5%)
Heat Recovery (28%)	Lig	Solar Diport	
Occ sains (7%		////	
	7///		
		////	
	///		
		////	
	///		
			boor
		enve	lope
		toaster for 40 minutes.	
	7////		
	\$////		•
devialis			i.
		15	i i
		ekWh/m ² per year	
Ventiletign	<i>"///X</i>	per year	Į.
		the state	
7////		7	
		300 000ekWh/year* *Estimated Value	
		Estimated value	
DSAI Targets* per Bui	ilding Tupology,	TEDI (ekWh/m²/	/ear)
DOM Targets per Bui	inalling Typology:		, our)

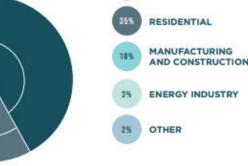

Losses

Infiltration Losses (6.5%)

Window Losses (35%)


DSAI Targets* per Building Typology: TEDI (ekWh/m²/year)				
Warehouse	Storage, Warehouse, Big-Box Re tail	5		
MURB	Multi Unit Residential Building	15		
Leisure	Sports, Recreation, Athletic	15		
Retail	Commercial, Retail	18		
Office	Office Buildings - any size	20		
Institutional	Education, Library, Public Safety, Religious	18		
Lodging	Hotel, Hospitality	21		
Performing Arts	Theatres, Entertainment Venues	25		
Medical	Clinic, Nursing, Assisted Living	30		
Lab	Science, Research, Laboratory, Inpatient Medical	55		

Targets numbers are subject to change *Targets numbers to be reviewed on each project *The 'e' in ekWh is for equivalent. This gives us a simpler metric to use when understanding and referencing different tel sources


What is A Good GHGI Target?

GHGI is dependent on the energy grid that your building is on. As an example, a building in Calgary would have a higher baseline GHGI than one in Montreal due to the heavy GHG intensity of the electricity grid.

B.12 CO₂e/m²

62 328 kgCO₂e/year*

What is GHGI?

The total greenhouse gas emissions associated with all energy use on the building site on a per area basis. It is reported in grams of CO_2 -equivalent per square meter per year (kg $CO_2e/m^2/year$) and includes emissions associated with area-based electricity generation.

What is A Good GHGI Target?

GHGI is dependent on the energy grid that your building is on. As an example, a building in Calgary would have a higher baseline GHGI than one in Montreal due to the heavy GHG intensity of the electricity grid.

How Can I Lower my Building's GHGI?

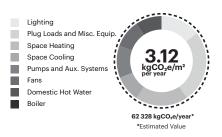
Want the best GHGI? These are the top four things that will help you lower your GHGI:

1. Add Renewable Energy Production On Site 2. Increase Your Enveloperation Comparison 3. Increase Your Air 4. Include Heat Rec Why is GHGI s ense? s a global standard that Because it estal comparison, bei arking and accountabi GHG emission to help owners make b decisions about th educe ns they are tak emissions and enable ins over time.

diamond schmitt

COMMERCIAL AND

RESIDENTIAL


MANUFACTURING

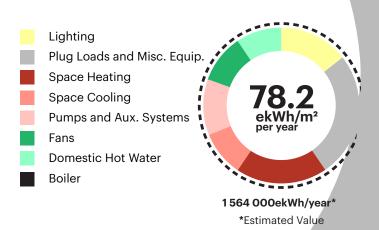
AND CONSTRUCT

w GHGI?

BUILDINGS

Green House Gas Intensity (GHGi) is expressed in kgCO₂e or kilograms of carbon dioxide equivalent. It is the amount of carbon dioxide released from the building during operation.

DSAI Targets* per Building Typology: GHGI (kgCO ₂ e/m ² /year)				
Warehouse	Storage, Warehouse, Big-Box Re tail	1.0		
MURB	Multi Unit Residential Building	3.0		
Leisure	Sports, Recreation, Athletic	3.0		
Retail	Commercial, Retail	3.0		
Office	Office Buildings - any size	3.0		
Institutional	Education, Library, Public Safety, Religious	4.0		
Lodging	Hotel, Hospitality	4.0		
Performing Arts	Theatres, Entertainment Venues	5.0		
Medical	Clinic, Nursing, Assisted Living	6.0		
Lab	Science. Research, Laboratory, Inpatient Medical	12.0		


*Targets numbers are subject to change *Targets numbers to be reviewed on each project

understand TEDI, GHGI, EUI

What is EUI?

The Energy Use Intensity (EUI) is an annual measure of the total energy consumed in a building over a year. This includes the energy used by the building's mechanical system and plug loads (appliances, electronics, and lighting). EUI is calculated by dividing the total energy consumed by the building in one year (kWh) by the floor area of the building.

Total energy use per year \div Floor area = EUI 9,000ekWh per year \div 200m² = 45ekWh/m²/year

So You Want a Low EUI?

A One Page Document on Energy Use Intensity

What is EUI?

The Energy Use Intensity (EUI) is an annual measure of the total energy consumed in a building over a year. This includes the energy used by the building's mechanical system and plug loads (appliances, electronics, and lighting). EUI is calculated by dividing the total energy consumed by the building in one year (kWh) by the floor area of the building.

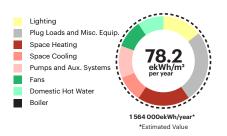
Total energy use per year ÷ Floor area = EUI 9,000ekWh per year ÷ 200m² = 45ekWh/m²/year

What is A Good EUI Score?

In addition to DSA targets, Toronto Green Standard (TGS) has a list of minimum EUI targets in accordance with building typology. There is more information on the city website.

How Can I Lower my EUI Score?

The follow items will help to lower your EUI score: 1. Lower your TED 2. High performa 3. Increase glat 4. Daylight Aut 5. Reduce Plug Why is EUI ortant? Setting EUI tar w buildings to meeting out a full picture of a energy demand to efficient choices in the selection ted building components, including domestic not water heating, space conditioning, building envelope strategies and appliances.


diamond schmitt

40ekWh/m²/yr	372ekWh/m²/yr	1000ekWh/m²/yr
best	A Typical	uses
energy	New Institutional	most
performance	Project	energy

Estimated Total Annual Energy Use: **1500 000ekWh** 1ekWh is approximately equal to watching 7 hours of television.

DSAI Targets* per Building Typology: EUI (ekWh/m				
Warehouse	Storage, Warehouse, Big-Box Re tail	10		
MURB	Multi Unit Residential Building	65		
Leisure	Sports, Recreation, Athletic	70		
Retail	Commercial, Retail	70		
Office	Office Buildings - any size	75		
Institutional	Education, Library, Public Safety, Religious	80		
Lodging	Hotel, Hospitality	90		
Performing Arts	Theatres, Entertainment Venues	100		
Medical	Clinic, Nursing, Assisted Living	125		
Lab	Science, Research, Laboratory, Inpatient Medical	215		

*Targets numbers are subject to change *Targets numbers to be reviewed on each project *The 'e' in ekWh is for equivalent. This gives us a simpler metric to use wher understanding and referencing different flue sources

obtain an energy use characterization for your building type

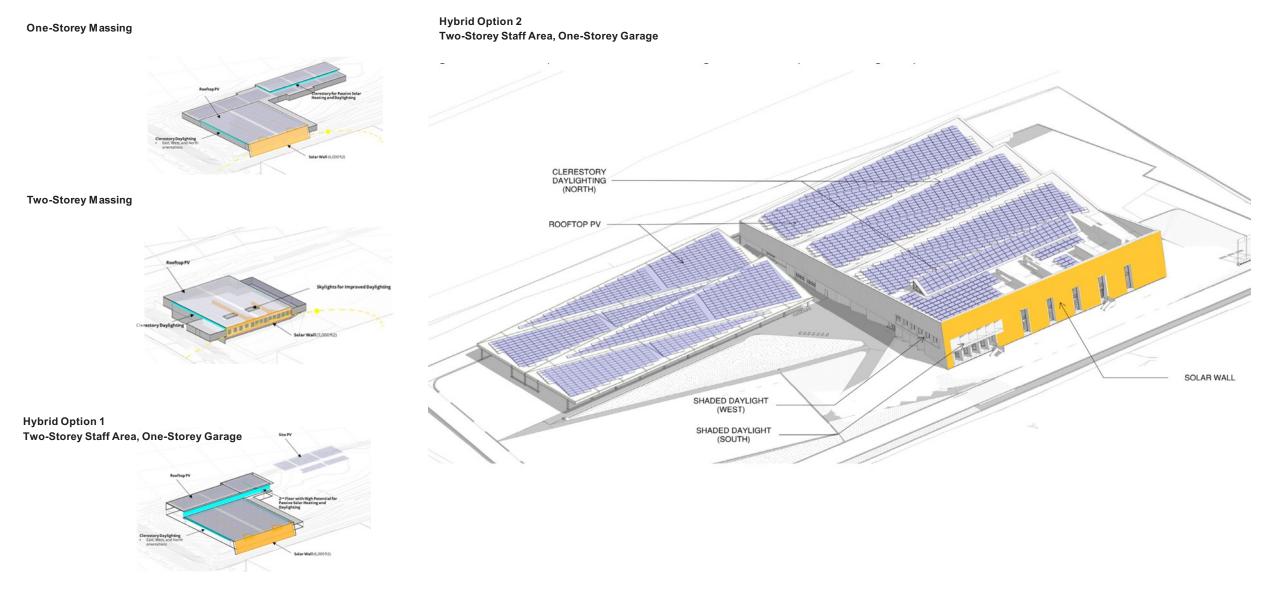
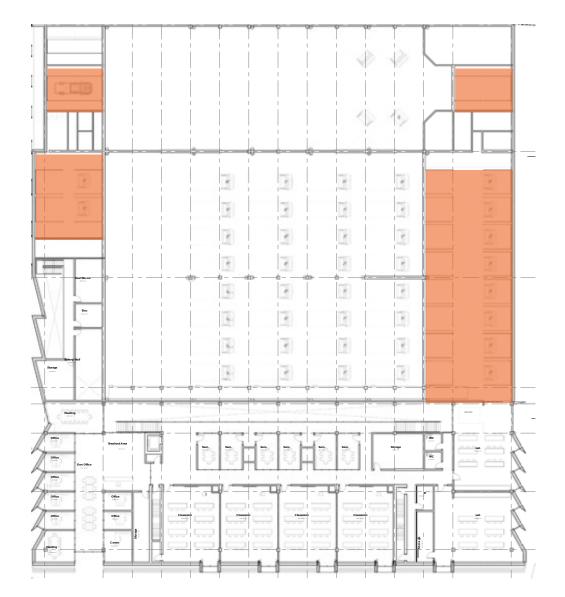
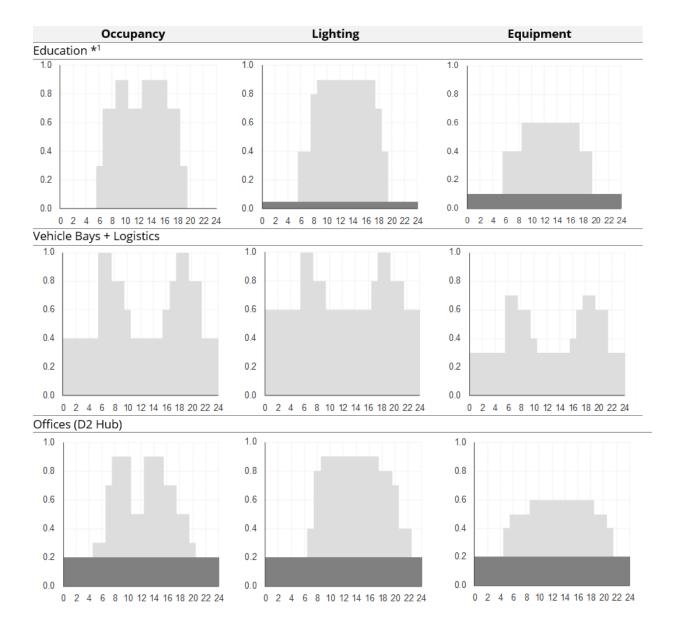



Figure 13 Building energy use characterization, for SB-10 benchmark design.


investigate massing and planning in response to energy use characterization innovate in response to energy use characterization:

DESIGN A SYSTEM TO PRE-HEAT MAKE-UP AIR



investigate planning and massing in response to energy use characterization Innovate in response to energy use characterization:

ADD VEHICLE VESTIBULES

develop operating schedules for your client type, user groups and building type

*¹ Classroom spaces occupied seasonally from March to June and September to December

use passive-house level insulation for walls, windows, floors, roofs

Learn the difference between nominal and effective R-Values: effective can be 50% of nominal, depending on your building type, wall types

GENERAL PARAMETERS

Location	Toronto, ON; Canada
Building Type	Medical Facility Gym Classrooms Garage
Conditioned Area	Approximately 83,000 ft ²
Modelling Software	eQuest v3.65 DOE 2.3

ENVELOPE PARAMETERS

	Baseline Design	Tier 2 / Proposed Design
Exterior Walls	Assembly U: 0.050 Btu/h- ft ² -°F	Assembly U: 0.025 Btu/h- ft ² -°F [R-40]
Roof Construction	Assembly U: 0.029 Btu/h- ft ² -°F	Assembly U:0.020 Btu/h- ft ² -°F [R-50]
Windows	Assembly U:0.35 Btu/h- ft ² -°F; SHGC: 0.40	Assembly U:0.20 Btu/h- ft ² -°F; SHGC: 0.30
Window to Wall Ratio	Same as Proposed Design	Hub, Office, Fitness, Atrium: 45% Locker Rooms: 15% Classrooms, Labs: 25%
Infiltration Rates	0.04 cfm/ ft²-façade area *1	0.02 cfm/ ft ² -façade area *1

SPACE LOAD PARAMETERS

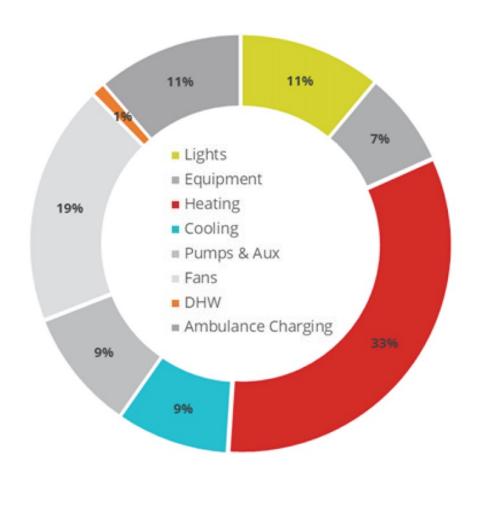
Space Type	Baseline Lighting	Proposed Lighting* ³	Equipment	Occupants	Outside Air
Classroom	0.96 W/ft ²	0.67 W/ft ²	1.00 W/ ft ²	20 ft ² /pp	7.5 cfm/pp + 0.06 cfm/ft ²
Offices	0.81 W/ft ²	0.57 W/ft ²	1.00 W/ ft ²	100 ft ² /pp	5 cfm/pp + 0.06 cfm/ft ²
Meeting	1.07 W/ft ²	0.75 W/ft ²	1.00 W/ft ²	20 ft ² /pp	5 cfm/pp + 0.06 cfm/ft ²
Lab	1.20 W/ft ²	0.84 W/ft ²	1.50 W/ft ²	20 ft ² /pp	7.5 cfm/pp + 0.06 cfm/ft ²
Fitness	0.50 W/ft ²	0.35 W/ft ²	1.00 W/ft ²	150 ft²/pp	20 cfm/pp + 0.06 cfm/ft ²
Circulation	0.66 W/ft ²	0.46 W/ft ²	0.20 W/ft ²	-	0.06 cfm/ft ²
Vehicle Bays	0.41 W/ft ²	0.29 W/ft ²	Ambulance		0.75 cfm/ft ² *1
Wash Bays	0.56 W/ft ²	0.39 W/ft ²	charging *2	8-10 p	0.75 cfm/ft ² *1
Lockers	0.48 W/ft ²	0.34 W/ft ²	1.00 W/ft ²	150 ft ² /pp	0.50 cfm/ft ²
Lounge	0.62 W/ft ²	0.43 W/ft ²	0.50 W/ft ²	20 ft ² /pp	5 cfm/pp + 0.06 cfm/ft ²
Storage / Comm	0.63 W/ft ²	0.44 W/ft ²	0.20 W/ft ²	-	0.12 cfm/ft ²
Stairs	0.58 W/ft ²	0.41 W/ft ²	-	-	0.06 cfm/ft ²
Elec/Mech	0.43 W/ft ²	0.43 W/ft ²	-	-	0.06 cfm/ft ²
Restrooms	0.85 W/ft ²	0.59 W/ft ²	-	-	50 cfm/fixture

*¹ Ventilation setback to 0.4 cfm/ft² based on CO sensors

*² Assumed 9-21 ambulances simultaneously charging at an average charge rate of 5 Amp/vehicle

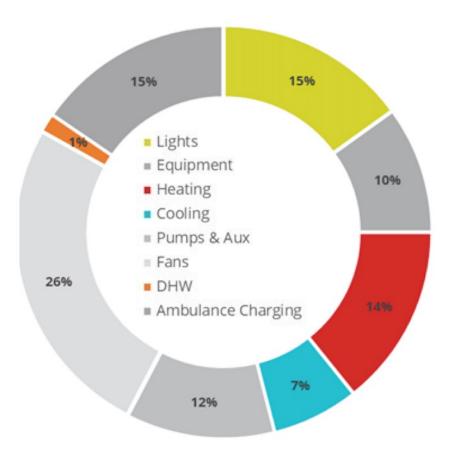
*3 Proposed lighting assumed to be at least 30% lower than the baseline.

nominal	effective
R-40	R-20/30
R-8	R-5
R-50	R-40
R-20	R-15
	R-40 R-8 R-50


Window to Wall Ratio

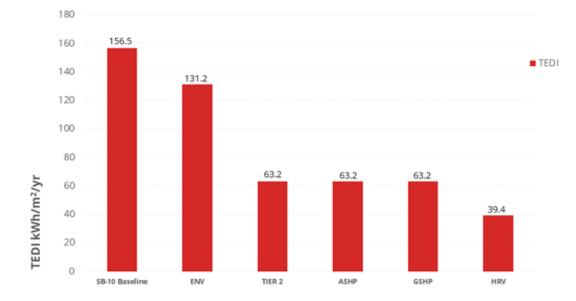
15-25%

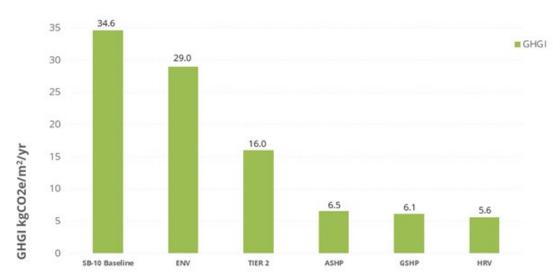
understand the major systems and their contribution to the final option Learn the difference between nominal and effective r-values: effective can be 50% of nominal depending on your building type, wall types


	SB-10 Baseline	ENV	TIER 2	ASHP	GSHP	HRV
High Performance Env		x	x	x	x	x
Reduced Lighting			X	X	X	x
Vehicle Bay Vestibule		х	х	x	x	X
Decoupled Systems w/ 70% Effective HRV			X	x	x	
Air Source Heat Pumps + Backup Boiler				x		
Ground Source Heat Pumps + Backup Boiler					x	x
Decoupled Systems w/ 80% Effective HRV		1				x
	1	1	1	I		

model the baseline building with options to achieve NZE

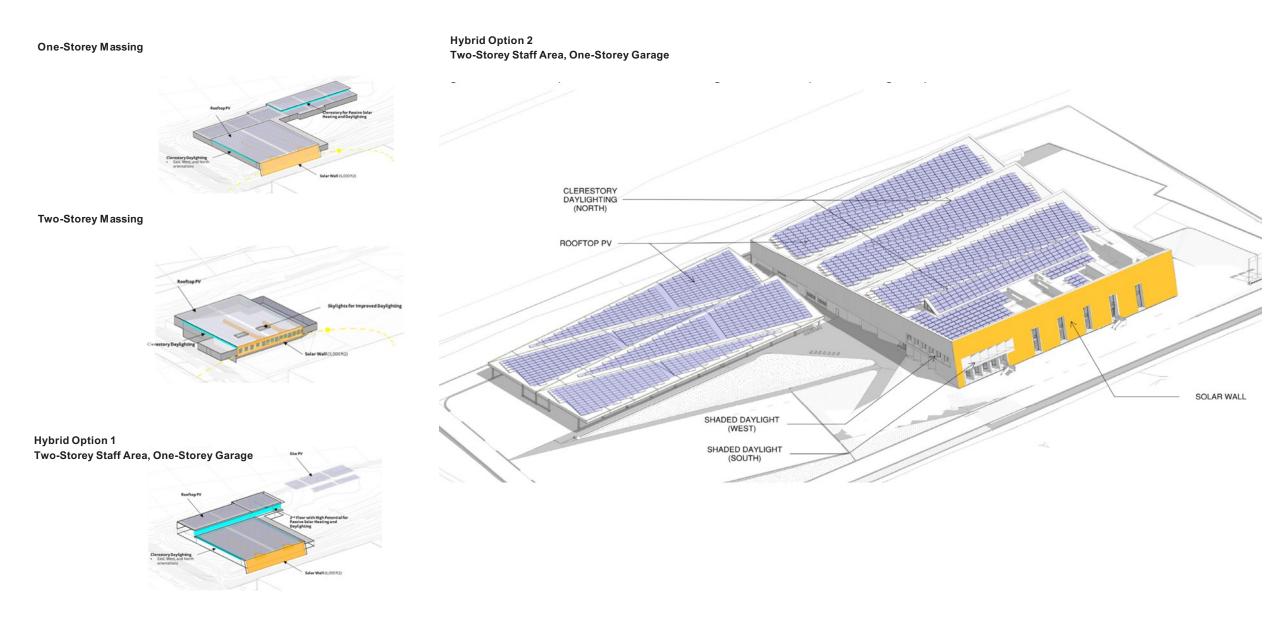
Energy end use breakdown for baseline building


Energy end use breakdown for NZE building Look for opportunities to reduce energy at each iteration of the energy model


after

before


compare TEDI & GHGI for different design options Understand the reasons for the differences, and stay focused on the targets



develop a PV analysis

Month	Solar Radiation (kWh / m2 / day)	PV Generation (kWh)	Building Consumption (kWh)
Jan	2.75	59,248	116,836
Feb	3.97	75,562	104,678
Mar	4.70	96,684	101,230
Apr	5.30	102,997	87,829
Мау	6.03	118,014	84,781
Jun	6.20	116,351	78,425
Jul	6.39	120,623	77,163
Aug	6.12	115,565	75,534
Sep	5.38	100,585	75,840
Oct	3.73	74,133	82,670
Nov	2.61	52,950	83,613
Dec	231	49,116	108,474
Annual	4.62	1,081,828	1,077,073

investigate PV options in response to energy use energy use intensity (EUI) Integrate required PV area with building design

Investigate PV options in response to energy use energy use intensity (EUI) Integrate required PV area with building design

Rule of thumb:

To achieve net zero with a baseline of EUI 75, area of photovoltaic panels is 50% of GFA

Therefore:

For one storey building at EUI 75, PV is 50% of roof area For two storey building at EUI 75, PV is 100% of roof area

Rule of thumb test:

EMS is EUI 139 (or about double 75) So, PV should require the entire roof area if it was a one storey building

Allowing deductions for the significant roof top equipment on the south (50%) And the fact that EMS is 75% one storey, 25% two storey

Based on the rule of thumb we will need additional PVs in the parking area In our case, we need roof area approximately 50% than the building footprint incorporate low temperature heating systems and reduced fan power supply air systems USE HYDRONIC FLOORS AND DISPLACEMENT VENTILATION

incorporate low temperature heating systems and reduced fan power supply air systems USE HYDRONIC FLOORS AND DISPLACEMENT VENTILATION

Radiant heating/cooling

To provide heating/cooling for the spaces, we are proposing a radiant flooring system. Radiant flooring will provide heating at the atrium ground level to condition only the occupied space rather than the full volume of the space. Additionally, water has approximately 3,500 times the heat capacity of air, so distributing hot water to the space is substantially more energy efficient than pushing conditioned air.

The major way in which our bodies reject heat is through radiation. This heat transfer is vastly improved when the surfaces we interact with (mainly floors and ceilings) are conditioned. Hydronic radiant relies on radiative heat transfer to a surface through water as the heating medium. Humans perceive thermal comfort based on air temperature, air movement, relative humidity, and radiant temperature of their surroundings. By controlling the mean radiant temperature of a space via radiant, the radiant slab achieves much higher levels of comfort than an all air system.

Radiant flooring entails PEX tubing buried within a concrete slab. Hot water or chilled water based on the space demand is then pumped through the tubing to heat/cool the floor. The concrete floor then acts as a thermal mass maintaining space temperature much more consistently than an air-based system. Radiant manifolds control the flow of water to the tubing. Coordination of radiant manifolds for each radiant zone will need to occur during design development. Typically, radiant manifolds are in cabinets in minimum 6" walls interior walls (typical size 24" tall by 42" wide).

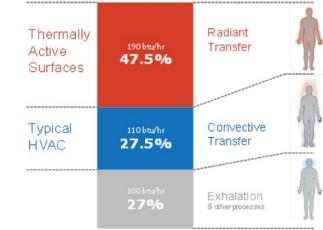
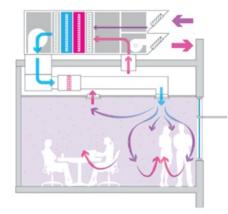



Figure 29 Heat transfer between people and spaces.

Figure 30 Radiant floor PEX tubing connection to radiant manifold.

incorporate low temperature heating systems and reduced fan power supply air systems USE HYDRONIC FLOORS AND DISPLACEMENT VENTILATION

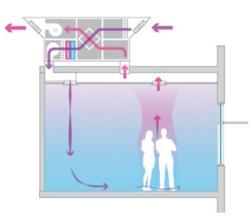


Figure 31 Traditional ventilation system.

Figure 32 Displacement ventilation.

Overhead displacement ventilation

Areas such as conference room and classrooms can be equipped with traditional looking overhead displacement ventilation as shown in the image below. Fitness rooms and garage bay where the concern of heavy equipment bumping in the ducts can also be alleviated by employing overhead displacement ventilation system.

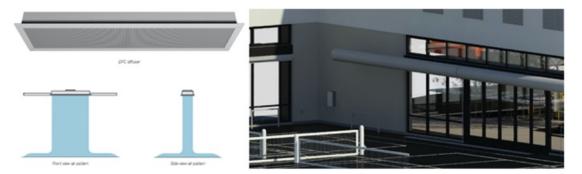


Figure 33 DFC Diffuser and air pattern showing overhead displacement ventilation.

Side Wall Displacement Ventilation

With displacement ventilation, there is an option of supplying the air with the side wall mounted diffusers as well. This can be a great fit for either in wall at the classrooms or even at the side of the garage bay.

Figure 34 Side wall mounted displacement ventilation.

Develop a net present value analysis of 4 options

SB-10 Compliant

Item	Description	Cost
PV Panels	Not included	
PV Sitework	Not included	
PV Additional Canopy Rough-In	Not included	
EV Charging	Not included	
Green Roof	2,332sm (50% of available roof)	\$1,515,800
Electrical System	To support conventional mechanical	\$3,584,400
Mechanical System	Condensing boiler w/ DHW storage tanks	\$5,625,100
Emergency Power System	Diesel generator w/ mobile gen. hook-up	\$1,321,800
System Cost		\$12,047,100
Subtotal (Building + Site + System)		\$51,390,000
Construction Contingency (5% Allowance)		\$2,569,500
Escalation Allowance (8.8% to Q1 2023)		\$4,522,320
GRAND TOTAL		\$58,481,820

TGS V3 Tier 2 Compliant

Item	Description	Cost
PV Panels	45kW system (5% building energy offset)	\$144,000
PV Sitework	Not included	-
PV Additional Canopy Rough-In	Not included	-
EV Charging	25% of parking stalls (48)	\$384,000
Green Roof	2,163sm (50% of available roof)	\$1,405,950
Electrical System	To support conventional mech.	\$3,584,400
Mechanical System	Condensing boiler w/ DHW storage tanks	\$5,625,100
Emergency Power System	Diesel generator w/ mobile gen. hook-up	\$1,321,800
System Cost		\$12,465,250
Subtotal (Building + Site + System)		\$51,808,150
Construction Contingency (5% Allowance)		\$2,590,408
Escalation Allowance (8.8% to Q1 2023)		\$4,559,117
GRAND TOTAL		\$58,957,675

Net-Zero Energy and Emissions: ASHP Description Cost Item **PV** Panels 1125kW system \$3,599,000 **PV** Sitework \$936,997 PV parking canopy structure PV Additional Canopy Rough-In Two (2) further parking canopies \$10,000 EV Charging 25% of parking stalls (48) \$384,000 Green Roof Not included. **Electrical System** With changes to support ASHP \$3,573,300 Mechanical System ASHP \$5,126,700 **Emergency Power System** Tesla Powerpack w/ mobile gen. hook-up \$1,301,000 System Cost \$14,930,997 Subtotal (Building + Site + System) \$54,273,897 \$2,713,695 **Construction Contingency (5% Allowance)** \$4,776,103 Escalation Allowance (8.8% to Q1 2023) **GRAND TOTAL** \$61,763,695

Net-Zero Energy and Emissions: GSHP

Item	Description	Cost	
PV Panels	960kW system	\$3,071,300	
PV Sitework	PV parking canopy structure	\$464,640	
PV Additional Canopy Rough-In	Four (4) further parking canopies	\$20,000	
EV Charging	25% of parking stalls (48)	\$384,000	
Green Roof	Not included.		
Electrical System	With changes to support GSHP	\$3,636,500	
Mechanical System	GSHP	\$6,292,100	
Emergency Power System	Tesla Powerpack w/ mobile gen. hook-up	\$1,301,000	
System Cost		\$15,169,540	
Subtotal (Building + Site + System)		\$54,512,440	
Construction Contingency (5% Allowance)		\$2,725,622	
Escalation Allowance (8.8% to Q1 2023)		\$4,797,095	
GRAND TOTAL		\$62,035,157	

Develop a net present value analysis of 4 options

select the preferred option

20 Year Payback Period Assessment

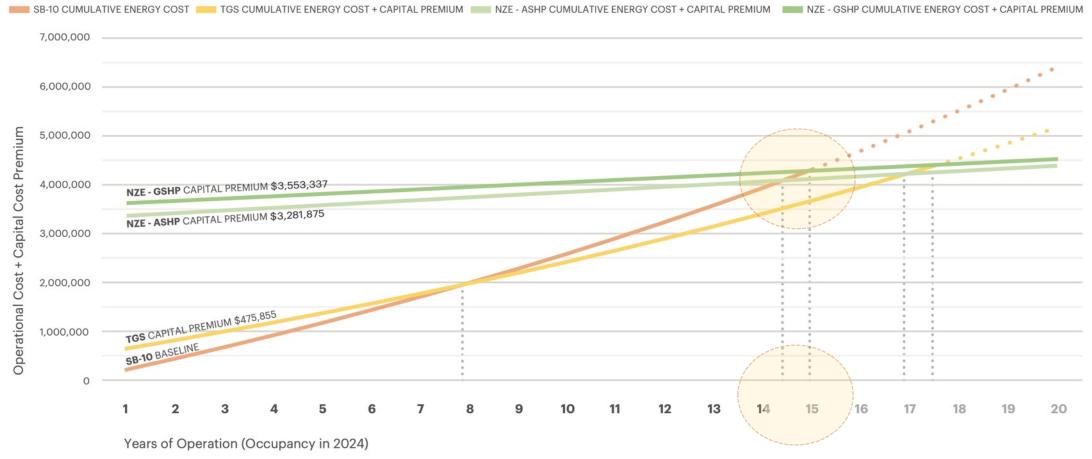
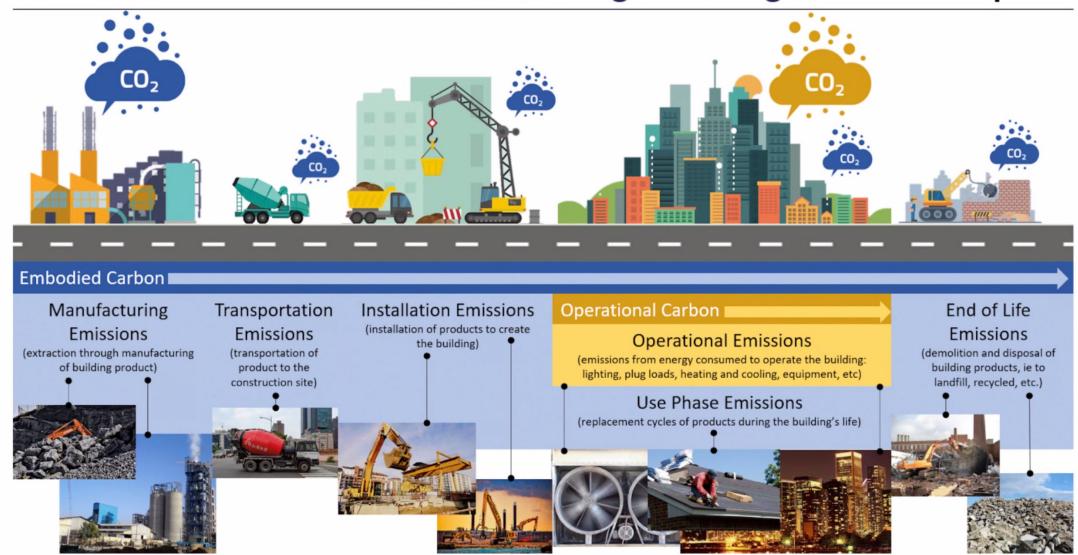
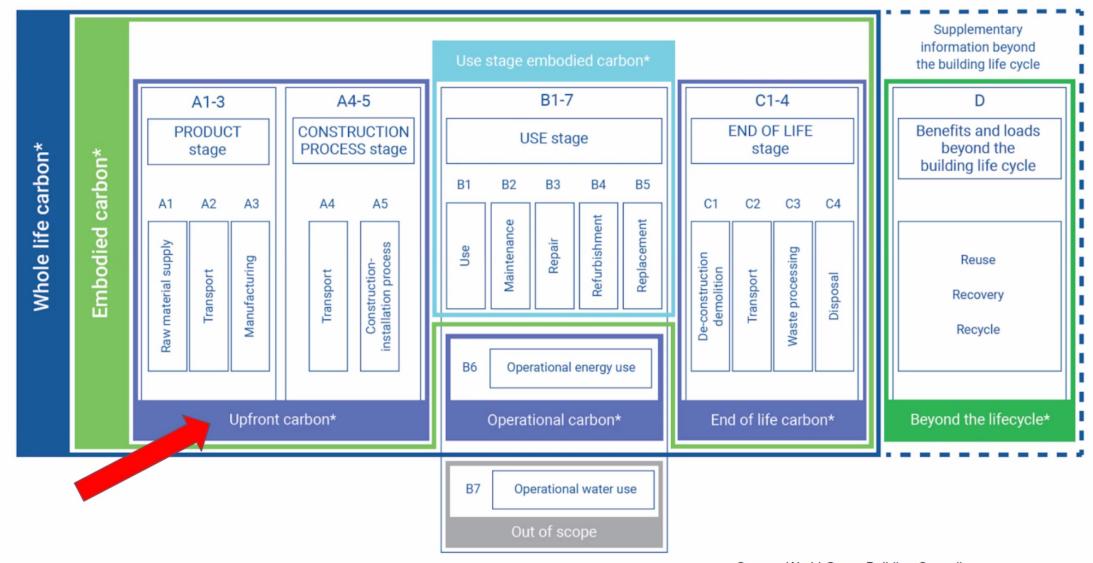
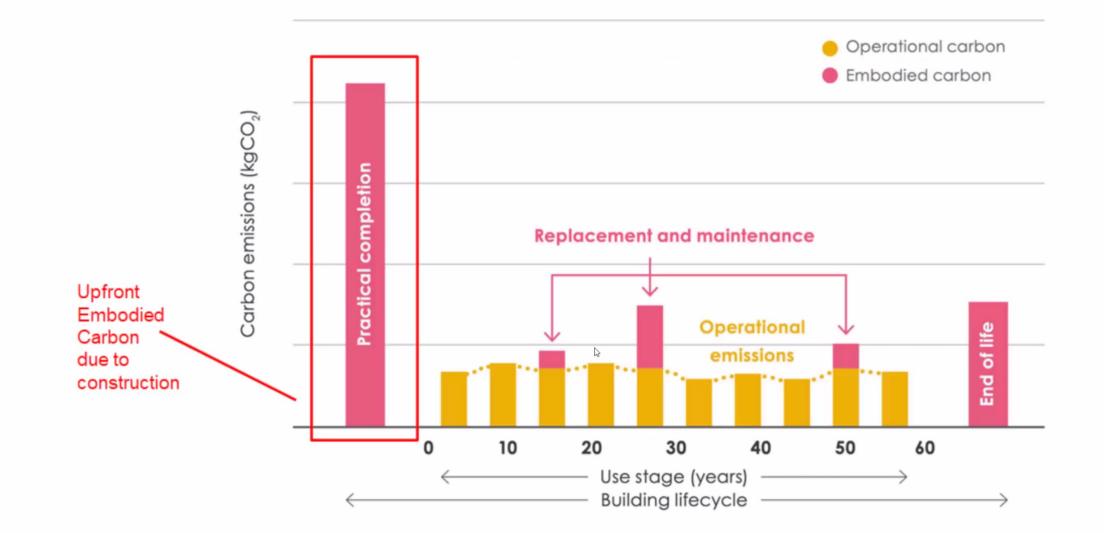



Figure 1 Plotting the cumulative utility cost + capital premium identifies the payback period for each design case.

Embodied Carbon 101


Graphic by Stacy Smedley, 2021

Understanding a Building's Carbon Footprint


2021 Mantle Developments Inc. All rights reserved.

Life Cycle Phases

7

Upfront Embodied Carbon

2 CoT City Project Analysis

2.4 Material Analysis and Reduction Strategies

Mass Timber (current)

+ 43.32 kgCO2e/m2 + 358.53 TCO2e

Biogenic Carbon

- 243.29 kgCO2e/m2

<u>Components</u> GLT and DLT deck Glulam columns and beams

Structural steel (original design)

+ 93.49 kgCO2e/m2 + 773.73 TCO2e

<u>Components</u> Concrete on metal deck Structural steel columns and beams

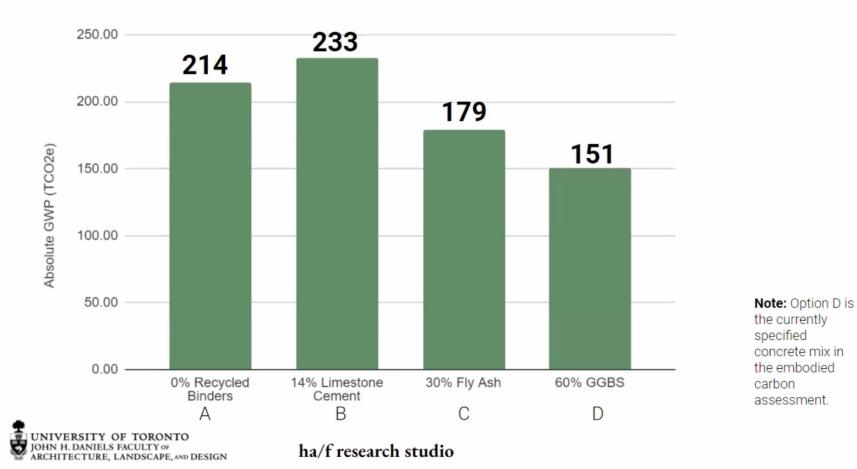
ha/f research studio

mass timber design 53.66%

savings in carbon emissions

> when switching from structural steel to mass timber, without accounting for biogenic carbon

2 CoT City Project Analysis


2.4 Material Analysis and Reduction Strategies

Ready-mix in substructure

includes footings, piers, foundation walls, ground slabs

 Concrete
 408.33 m3

 Rebar (97% recycled)
 20.86 m3

special concrete mix 29% savings in carbon emissions

from Option A (0% recycled content) to Option D (60% GGBS)

TARGETING ZERO EMISSIONS & NET ZERO ENERGY

Proposed NZEE Building	EUI 139.1 (kWh/m2)	TEDI 39.4 (kWh/m2)	GHGI 5. (kg CO2e/m2)
SB-10 Building Benchmark Building	297.6	156.5	34.6
TGS Tier 2 Baseline Building	190.5	63.2	16.0

For supporting & additional info please refer to submitted Net Zero Energy & Emissions Feasibility Study.

.

Questions & Answers

Thank you for attending!

