

Wastewater Energy Transfer

City of Ottawa Scoping Study - Findings

Clean Air Partnership Webinar November 4, 2021

Presented by:

Joan Haysom, Ph.D., P.Eng. J.L Richards & Assoc. Janice Ashworth

City of Ottawa

JLR's Markets

Municipal

Buildings

Innovative Energy

Environmental

Industrial & Mining

JLR Team on this project

Joan Haysom, PEng, PhD

- Energy Market Chief
- Sr Energy Eng & PM

Jarrett Carriere, PEng, MSc, CEM

- Sr Energy Engineer
- Heat transfer & geothermal

Mohammad Heidari, PEng, PhD

- Jr Energy Engineer
- Geothermal analysis

Sheldon Dattenberger, PEng PMP, FEC

- Senior Civil Engineer
- Sewer infrastructure

- Mechanical Engineer
- Technology Review, Archetype systems

Adam Frey, EIT

- Energy EIT
- Archetype calculations

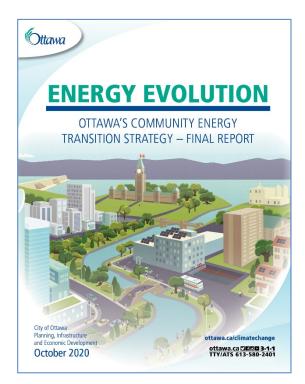
Kris Kerwin, CTech

- Sr GIS Technician
- ArcGIS platform for Wastewater and Geothermal

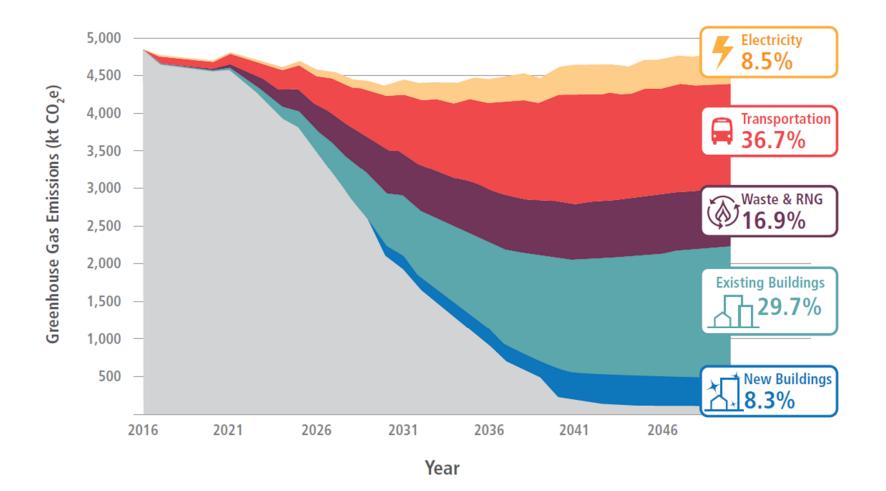
Jurek Wozniak, PEng

- Sr Mechanical Engineer
- Peer Review Technology & Archetypes

Eric Dubois, EIT


- Mechanical EIT
- Technology Review

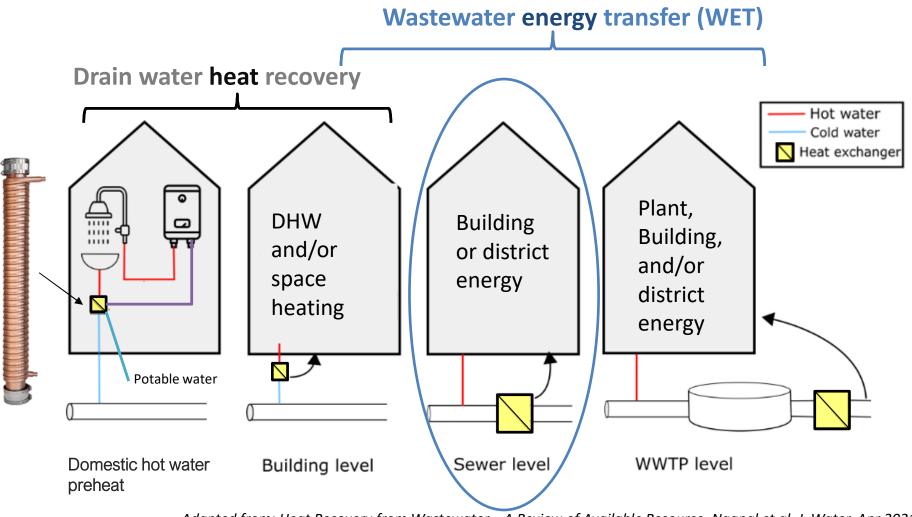
City of Ottawa: Energy Evolution Strategy


- Unanimously received by Council in October 2020
- Sets the framework for how Ottawa can achieve its GHG targets
- 20 projects are to be completed in the short-term (2020-2025) in five areas: Land Use, Buildings, Transportation, Waste and Renewable Natural Gas, and Electricity.

What it will take to achieve the targets

Overview

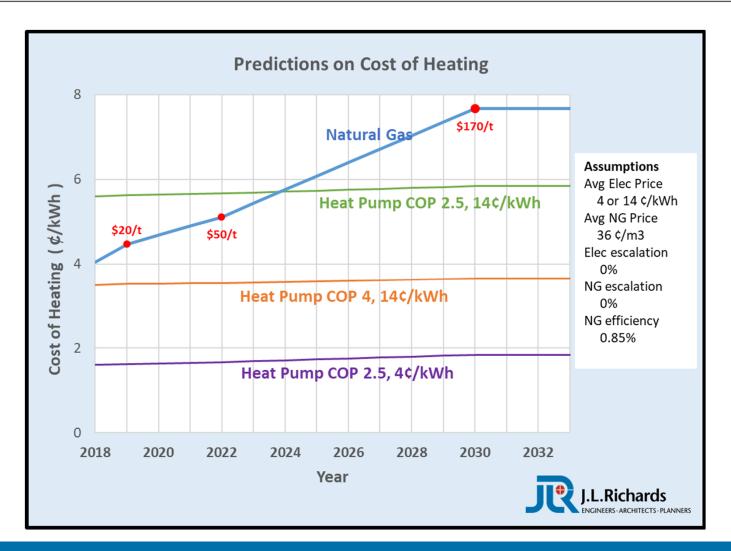
Acknowledgements



Slide 7 of 38

Context: Four main types

Adapted from: Heat Recovery from Wastewater—A Review of Available Resource, Nagpal et al, J. Water, Apr 2021


Motivation

- Heat exchange with a flowing liquid is the most efficient, especially when
 - Wastewater is warm in winter (~10°C)
 - Wastewater is cool in summer (~20°C)
- \Rightarrow highest efficiency heat pump for heating & cooling
- The "resource" is large in the urban core
- Alternative low carbon solutions:
 - Air source heat pump
 - Closed-loop ground source heat pump
 - Open-loop ground source heat pump

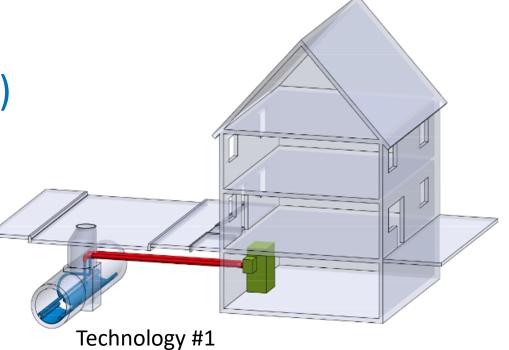
Heating Operational Costs

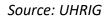
Outline

- 1. Technology Overview
- 2. Wastewater as a Resource
- 3. WET Implementation Design Concepts
- 4. Observations, Recommendations, Questions

The Discovery Process

BEST MANAGED COMPANIES

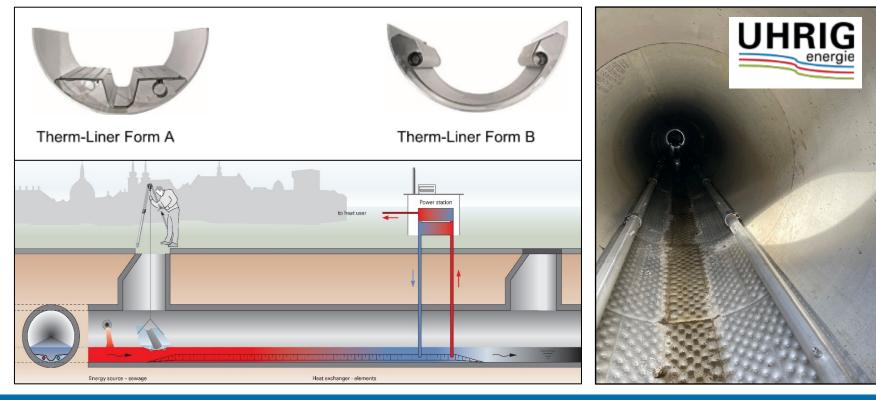

Technology Overview



Main Components

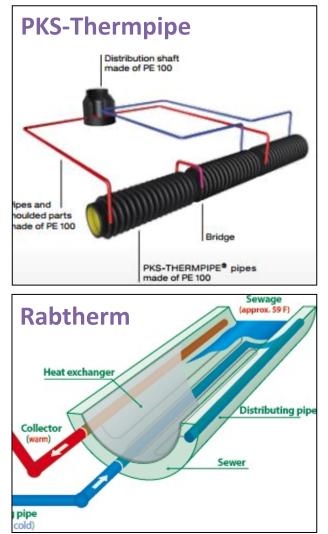
Minimum components

- Heat exchanger (<u>Hx</u>)
- Pump
- Connection pipes
- Heat pump (HP)
- Some systems have
 - Wet well
 - Filters, etc



Technology #1 – Hx placed in an existing sewer

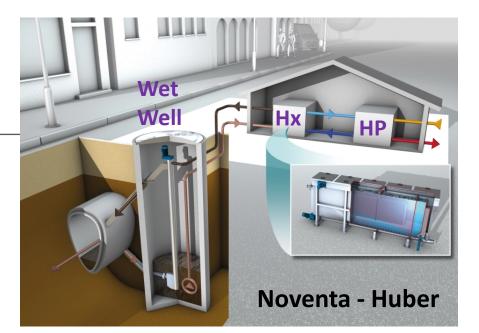
- Introducing a new object into the wastewater flow
- Biofouling expected, accounted for in system design, annual clean suggested
- Lowest cost of deployment
- Many deployments in Europe, entering NA

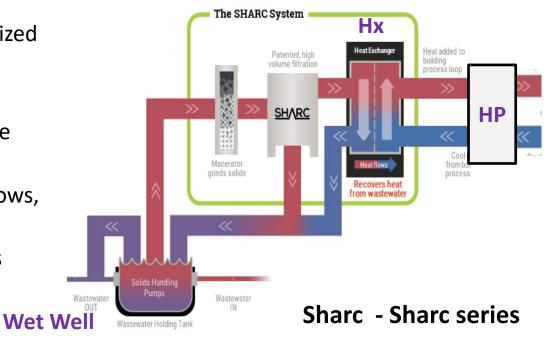


All images care of UHRIG Energie

Technology #2 – Hx integrated into pipe

- No direct interaction with sewage
- Very low maintenance
- Will exchange heat with the ground too
- High civil costs unless planned
- No known installations in NA





Tech #3 – External Hx

- Sewage is "borrowed" from pipe and pumped to a wet well
- Solids are separated from liquids
- Liquids pass through a proprietary heat exchanger
- Hx have integrated cleaning
- Configuration allows Hx to be optimized for efficiency
- Minimal impact on sewer pipe
- More equipment maintenance, more complexity, higher footprint
- Scalable, generally best for bigger flows, larger heat delivery
- Can integrate with pumping stations and WWTPs

Technology #3: Two Canadian Suppliers

- Noventa (Toronto) is exclusive Canadian supplier of German Huber Hx.
 - Will do any part of supply, design, build, finance, own, operate, maintain (spin-out from Enwave)

Toronto Western Hospital 8.5 MW heating, 8.4 MW cooling

- Sharc (Vancouver) Canadian developed technology
 - Primarily a supplier with design support, possibly energy as a service
 - Support through HTS
 - Note they also a building-scale product called Piranha

Vancouver False Creek Neighbourhood Energy Utility 3 MW heating \Rightarrow 8 M heating

Comparison of Key Parameters

	Tech #1	Tech #3
Sewage Flow	> 10 L/s	> 34 L/s
Sewage Pipe Size	400 mm +	600 mm +
Length in sewer	~ 100 m	n/a
Energy Exchange Potential	< 450 kW	MWs
Mech Room Footprint	< 20 m ²	20 – 60 m ²
Small system costs (80 kW)	\$4,600 / kW	n/a
Medium system costs (450 kW)	\$2,600 / kW	\$3,200 / kW
Large system cost (1.5 MW)	n/a	\$1,800 / kW

These are very rough characterizations for guidance only (+ 100%, - 50%). Each project will be different.

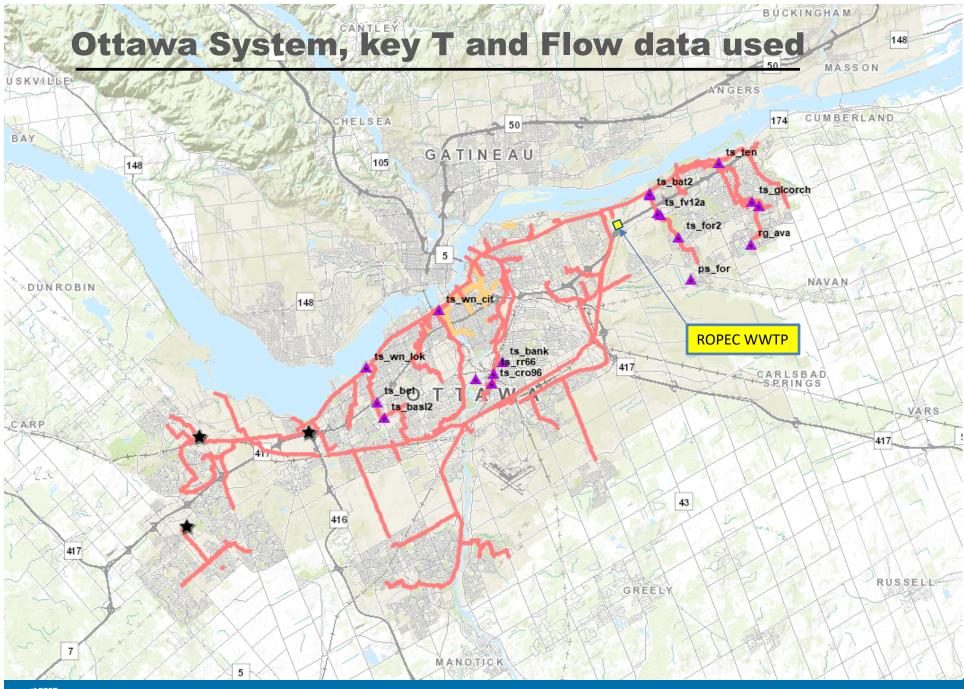
Technology #2 is similar to Technology #1

Slide 19 of 24

Wastewater as a Resource

Slide 20

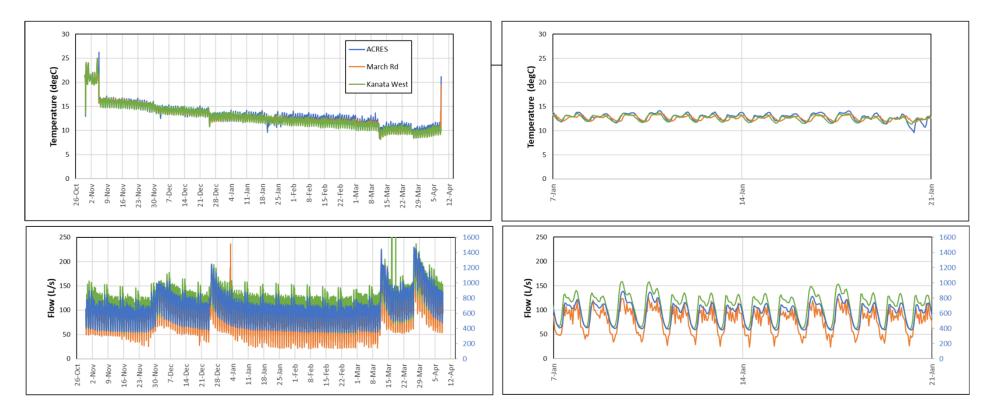
Principles


Heat Capacity $(kW) = Flow x 4.128 x \Delta T$

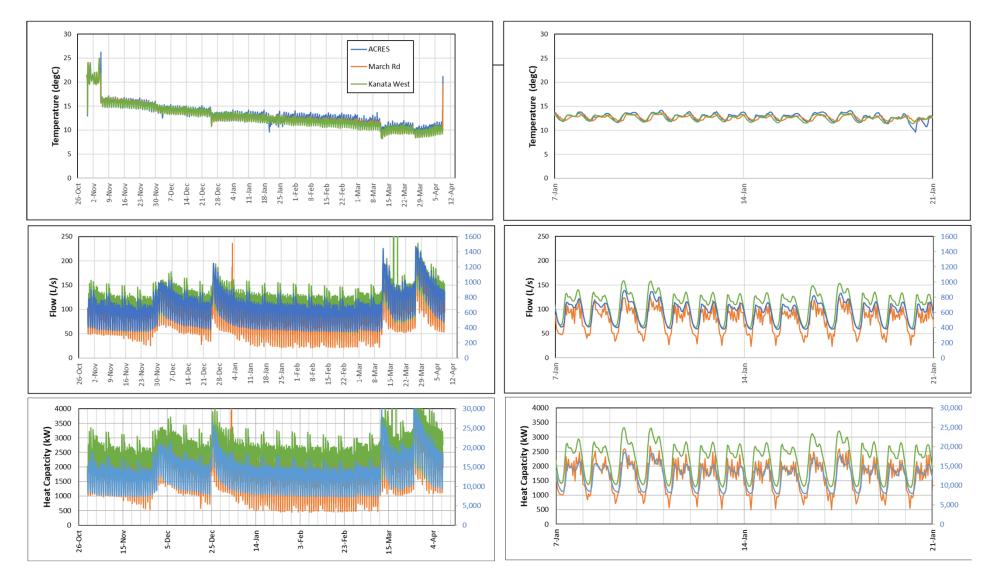
- *Flow* is flow rate of the wastewater, in L/s
- 4.128 is the specific heat capacity of the wastewater (assumed to be identical to water), in kJ/kg°C
- ΔT is the temperature drop of the wastewater through in the Hx

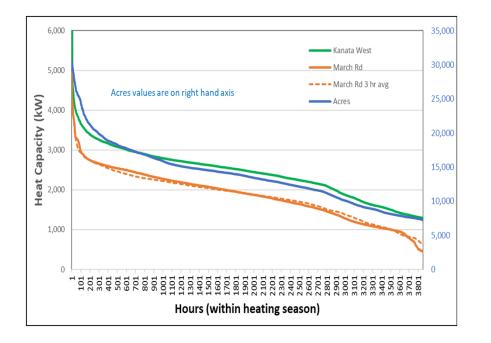
$$\Delta T = T_{in} - T_{out}$$

- \Rightarrow *Flow* is the primary determinant of heat capacity of a project.
- \Rightarrow T_{in} varies hourly and across the season
- \Rightarrow T_{out} should avoid freezing (we have imposed $T_{out} \ge 5^{\circ}$ C)
- \Rightarrow Heat pumps have to work harder when T is low, thus T mainly affects efficiency


Flow & Temperature Data

- 3 probes from the UOttawa-CHEO COVID-19 Wastewater Study produced golden datasets
 - coincident T and flow measurements
 - spanned the entire winter
 - Used *submersible* T probes


Coincident Measured Flow and T data – 1 of 2

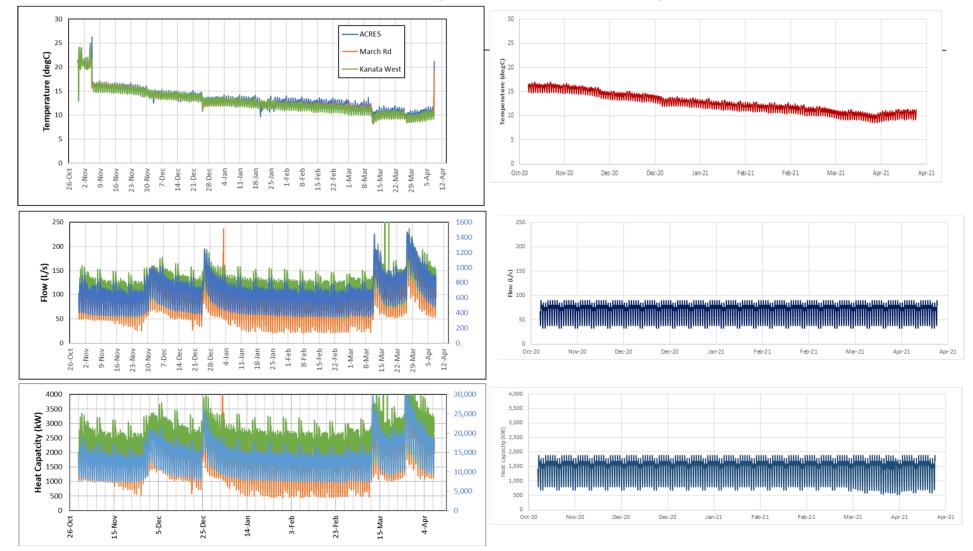

Coincident Measured Flow and T data – 2 of 2

Heat Capacity Curves

- Re-order hourly data into highest to lowest
- useful for design work
- \succ H_{min} and H_{avg}
- Very different than other heat supplies

Flow Data

- 600 "ETS" flow measurements across the city
 - But short timespans, mostly spring/summer, sparse, non-coincident
- City uses these to calibrate flow models
 - We concluded that flow models are typically the most available data for system-wide analysis
 - Modeling is *only an* indicative value
 - We observed different flow values between different models
 - <u>Hourly patterns</u> of flow matter for WET projects
 - But hourly patterns vary dependent on the upstream users
 - Using 16 ETS sites, the minimum flow was found to vary between 20% and 65% of the average daily flow.
 - Take real measurements during feasibility of a project

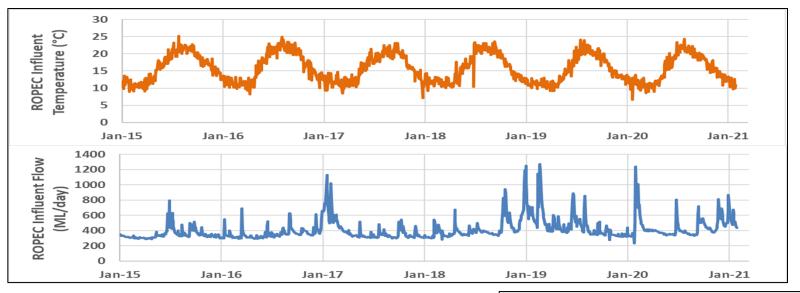


Measured

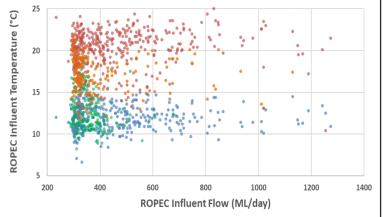
Modeled (dry-weather)

(different locations)

VS

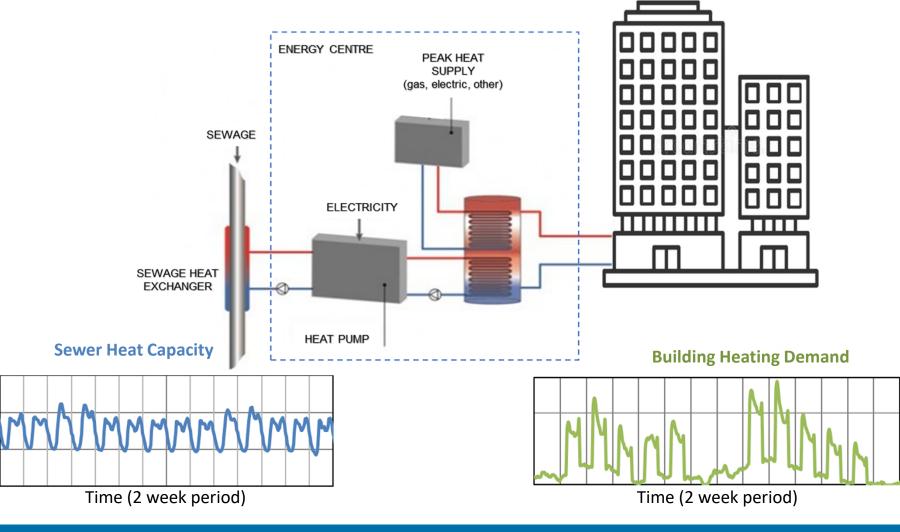

Sewer Types and Temperatures

- Combined pipes should work (using dry-weather flows)
- Heat exchange between the wastewater and the environment seems intuitive
 - Input T influences: potable water T, users, infiltration
 - Heat loss influences: ground (depth), air, pipe type
 - WET suppliers report that sewer T equalizes a few 100 m after the WET system
 - Do dense urban areas have higher wastewater T?
- Needs more study



Ottawa WWTP (ROPEC) 5 Years of Data

- No correlation between flow and temperature
- General theory is that influent at ROPEC, in particular because of the long travel paths, are equalized with the environment
- More study is warranted



WET Principals of Design

Slide 31

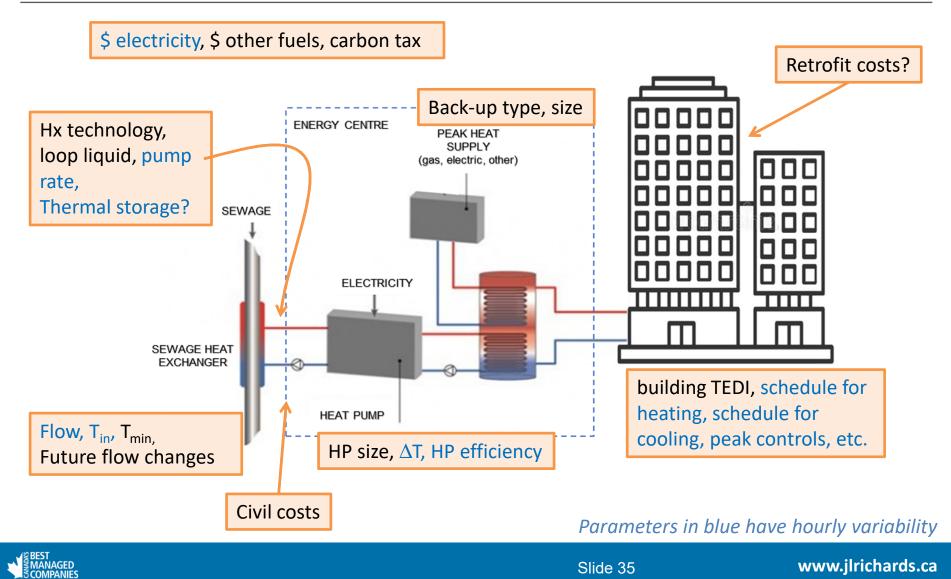
WET System – Principals of Design

Archetypes – a very small sample size

These are at, and smaller than the bottom recommended flow rates for viability


#	Character of Sewer Line / Load	Study Type	Building Model	Flow Rate	WET size	Outcomes
1	Downtown collector / MURB	Building	A 1990s MURB (11 storey)	12 L/s (675 mm) Modeled	Tech#1 150 kW HP	OK
2	Suburban Pump Station / Office	Building	A 2001 office (9 storey)	21 L/s (1050 mm) Measured	Tech#3 1.4 MW HP	х
3	Medium sized urban collector / possible major new facility	Heat capacity only	n/a	32 – 58 L/s (1050 mm) Modeled	Tech #3 ~ 1.4 MW+	OK
4	Major trunk line / new district energy system	Heat capacity only	n/a	~ 400 L/s (1650 mm) Modeled	Tech #3 17 MW (avg) 7 MW (min)	Wow!

Archetypes - Heat Capacity vs Heat Load



- Older buildings with poor envelopes and peaky heating schedules are harder to support
- Daytime 9-5 occupancy are harder economics
- System economics is complex, dependent on many design factors and boundary definition
- Competitiveness improves with :
 - Inclusion of carbon pricing
 - New buildings
 - Higher flows, larger projects
 - Inclusion of cooling
 - ➢ Funding, ACCA, etc...

Complex system design – optimize for economics

Contrasting to GSHP

- WET supply may be variable within the day if $H_{cap} = H_{load}$
 - may be mitigated by thermal storage, good envelope
- WET heating/cooling is flexible seasonally
 - any heating : cooling ratio
- WET pairs well with other heat pumps into a hybrid solution

	WET	Closed-Loop GSHP	Open-loop GSHP	
Daily variability	Maybe, if project uses full flows	none	none	
Seasonal restrictions	~ none	Heating = cooling	~ none	
Geographic distribution	Linear along pipes	Nearly anywhere	Local geology dependence	
Feasibility assessment	Deploy sensors	~ none	Hydrogeologist consult & drill deep well	
Costs	\$	higher	\$ JH1	
Slide 36 of 38				

JH1 Joan Haysom, 2021-11-04

Observations & Recommendations

Observations & Recommendations

- Wastewater is an underutilized energy source
- WET systems are viable
- Impacts on infrastructure can be low
- A great option for Net-Zero carbon buildings
- There is significant interest growing (low carbon building developers, MUSH sector, third-party owner, etc.)
- Cities should develop policies and processes to
 - Support private projects
 - Consider their own corporate buildings
 - Evaluate as part of district energy infrastructure
- More industry / muni knowledge sharing would greatly help
- > FCM should continue to support various grants on the topic

Questions that remain

- Best approaches to quantify the flow?
 - Modeling options, accuracy on hourly profiles
 - Breadth of measurement points
 - Sensitivity to future changes
- Quantification of temperature issues?
 - Heat exchange in next downstream section
 - T profiles on suburban vs dense urban
 - Impacts on WWTP, if any
- Understanding of Project ROI?
 - Full heating and cooling ROI across a number of variables
 - Value to cooling, reduced grid peak demand
 - Share of a complete building design and study
- What Information Should Muni's Provide?
 - Pipe diameter (some are on-line, some are not)
 - Modeled flow (min, avg?, profile?) Modeled Heat Cap.
 - T profiles
 - Anticipatory flow & T measurements of key locations
- Which Municipal Policies Work Best?

System sizes H_{sewer}:H_{Load} ratio Building TEDI values Civic costs Inclusion of storage On a combined pipe Net COP Hybrid with GHSP Hybrid with drain water 2 WET projects on 1 line Ownership structure Etc.

Ownership models? some thoughts...

- Vancouver False Creek Municipal Utility
 - WET inside WW pump station, serves a municipal district energy system that provides all heat
- Toronto policy
 - Developer owns all (can be building owner or a third-party energy utility)
- Hybrids?
 - A mixed model is complex, as the value to each building is different
 - could a City own Hx (but not HP)

Thank you! Looking forward to working with many of you.

Contact Information: Joan Haysom, Ph.D., P.Eng. Innovative Energy Market Chief (343) 804-4402 jhaysom@jlrichards.ca

Slide 41