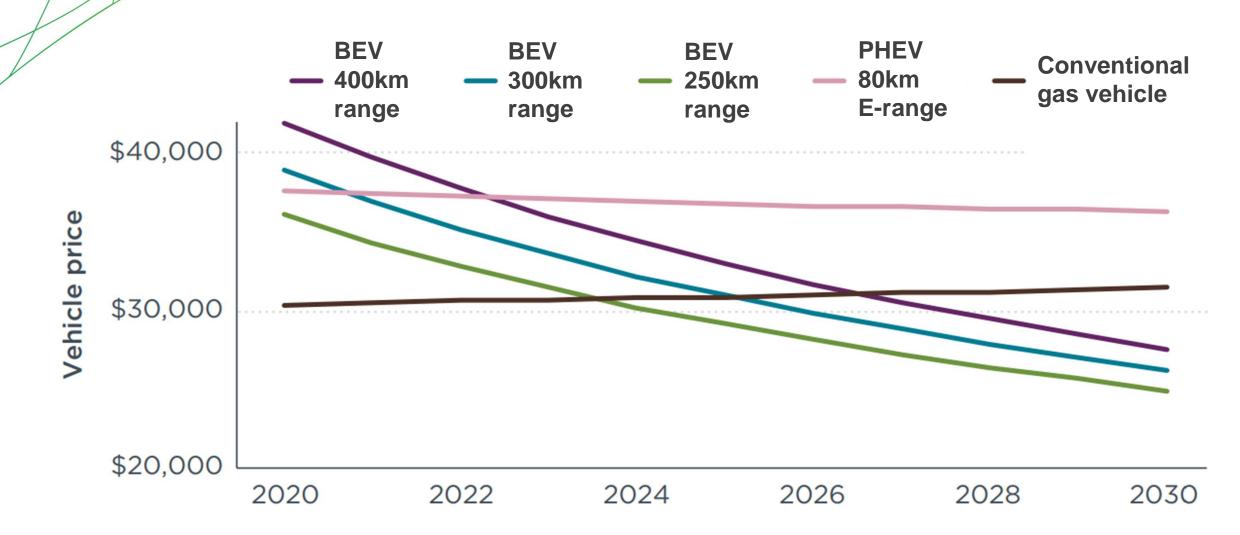


OUTLINE

- Background
 - Quick review of EV trends & context
 - Importance of access to home charging
 - About "EV Ready" parking
 - About EV Energy Management Systems
- EV Ready Residential Parking Costing Study
 - Overview of building archetypes
 - Design scenarios
 - Results



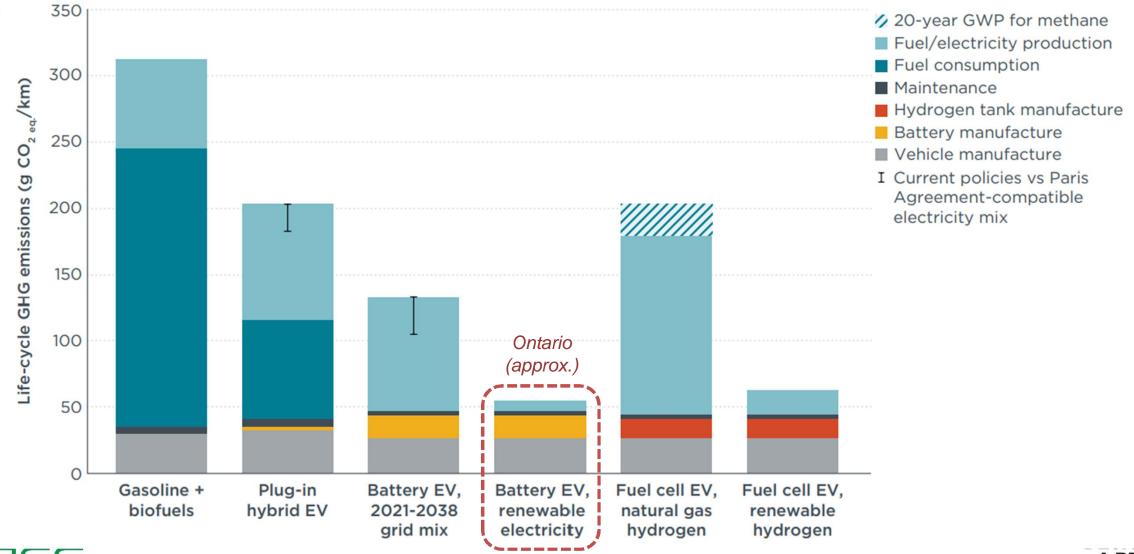
EV TRENDS & CONTEXT

EV "PRICE PARITY" (NO INCENTIVES)

DESIGNING A BETTER TOMORROW

POLICY IS DRIVING EV ADOPTION

• In June 2021, the Federal Government announced it would adopt requirements for 100% of passenger vehicle sales to be zero emissions (e.g. EVs) by 2035.



Source: Government of Canada. June 2021. *Building a green economy: Government of Canada to require 100% of car and passenger truck sales be zero-emission by 2035 in Canada*. https://www.canada.ca/en/transport-canada/news/2021/06/building-agreen-economy-government-of-canada-to-require-100-of-car-and-passenger-truck-sales-be-zero-emission-by-2035-in-canada.html

EVS ARE A CLIMATE SOLUTION

International Council on Clean Transportation Estimate for Lifecycle Emissions – North America SUV

A BETTER
TOMORROW

Source: ICCT. July 2021. <u>A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars (theicct.org)</u>

THE NEED TO SUPPORT ACCESS TO EV CHARGING

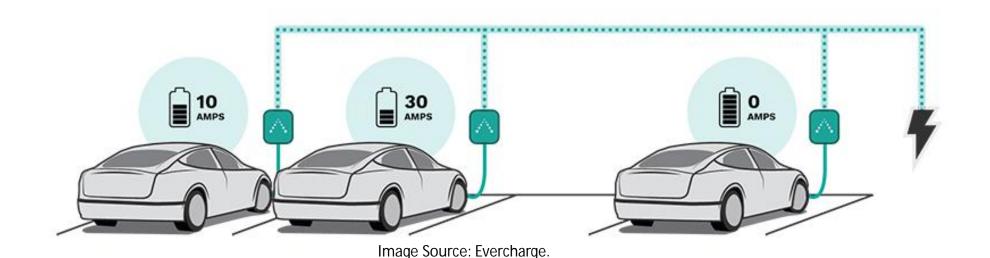
WHERE DO WE CHARGE?

 "At Home" charging critical to enabling EV adoption

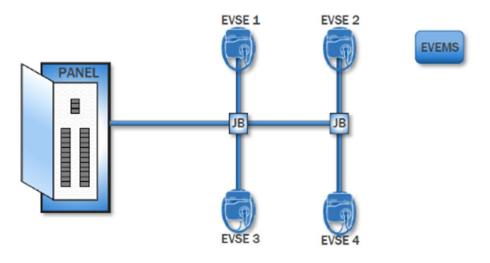
 "At Work" and publiclyaccessible "On the Go" charging are important supplements

IT'S COSTLY & COMPLICATED TO RETROFIT CHARGING INTO MURBS

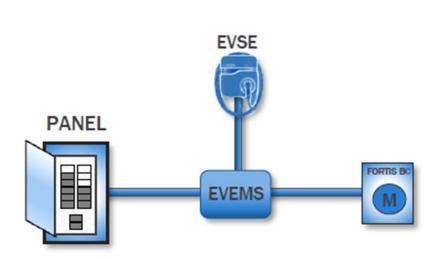
- Incremental EV charging retrofits are expensive
- Comprehensive (e.g. 100%) EV Ready retrofits can significantly lower costs per parking space.
 - However, it is challenging for condominium associations & rental building owners to invest in these projects.
 - Complicated. Owners lack of expertise.
 - Significant upfront costs.
- It is best to future-proof buildings for EVs at time of construction.



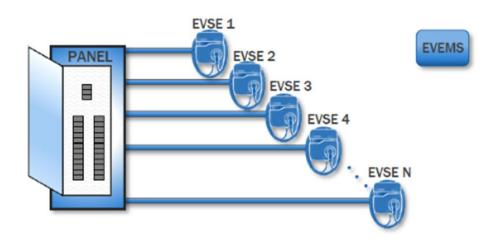
ABOUT EV ENERGY MANAGEMENT SYSTEMS

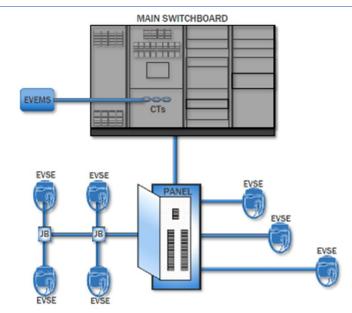

EV Energy Management Systems (EVEMS)

- EVEMS monitor and control EV loads.
- Advantages include:
 - Reduction in electrical capacity and associated electrical infrastructure costs necessary to provide EV charging.
 - Ability to accommodate greater amount of EV charging within finite electrical capacity of existing buildings.
 - Managing EV loads to maximize value e.g. avoid demand charges; respond to dynamic rates; respond to utility demand response events; use variable renewable energy; etc.
- EVEMS are important to enabling high levels of EV charging in many MURBs, workplaces, and fleet parking applications.

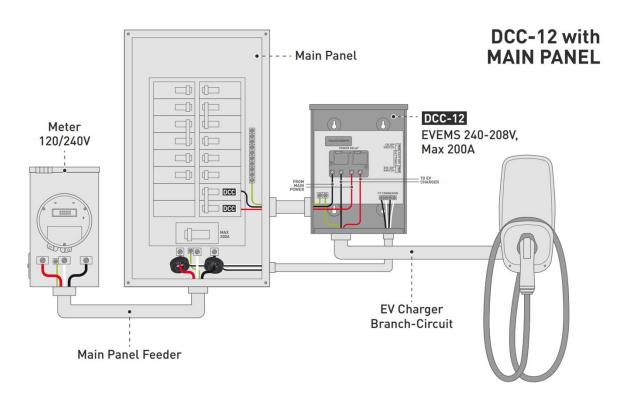


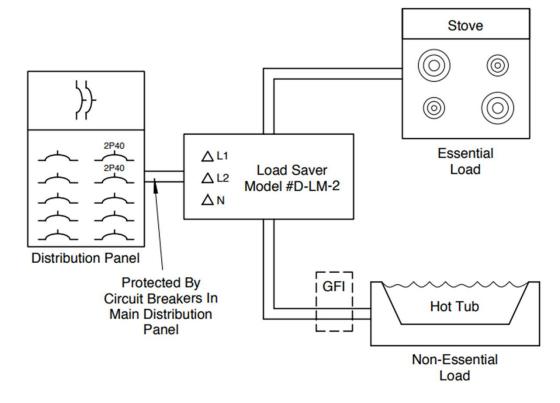
Some Electrical Infrastructure Configurations




Circuit sharing: Multiple EVSE on a circuit, with control to ensure capacity is not exceeded.

Feeder sharing: on/off control of EVSE based on available capacity on the supply to an electrical panel.

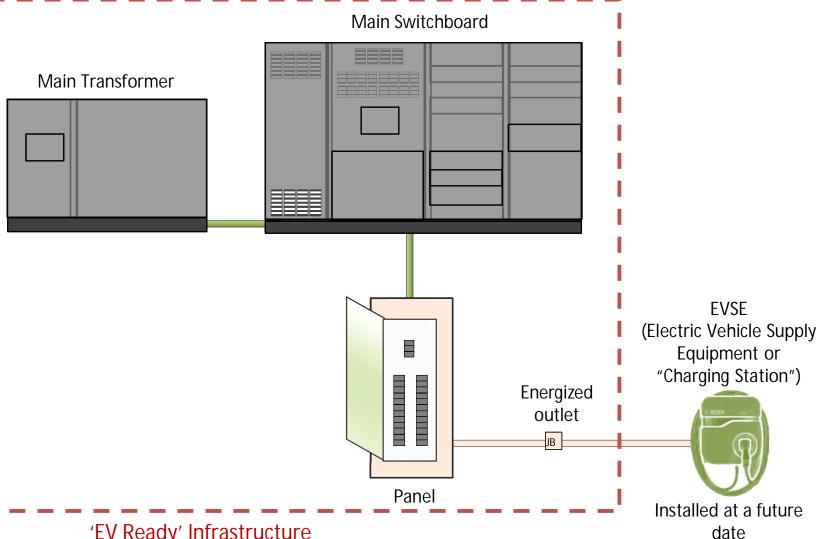



Panel sharing: EVSE loads in excess of panel, with control to ensure capacity is not exceeded.

Service monitoring: Monitoring of spare capacity on building's main electrical board; and control of EV loads accordingly.

Example EVEMS for Single Family Homes & Townhome Applications

Source: RVE. Source: AC Dandy.



FUTURE-PROOFING PARKING TO BE "EV READY" LOCAL GOVERNMENT REQUIREMENTS

WHAT IS "EV READY" PARKING?

DESIGNING A BETTER TOMORROW

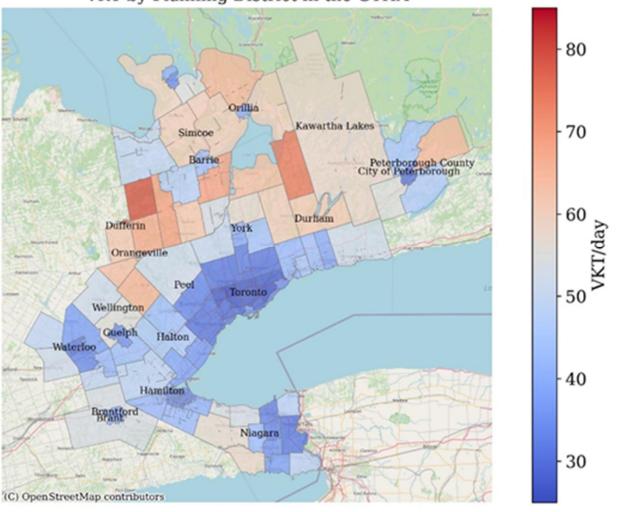
WHAT IS AN "ENERGIZED OUTLET"?

Junction Box

Receptacle

Jurisdiction	Residential	Commercial
City of Vancouver, BC	100% EV Ready	10% EV Ready
City of Richmond, BC	100% EV Ready	TBD
City of Port Coquitlam, BC	1 EV Cap. / dwelling	TBD
City of Burnaby, BC	100% EV Ready	TBD
City of Coquitlam, BC	1 EV Ready / dwelling	TBD
City of New Westminster, BC	100% EV Ready	TBD
City of North Vancouver, BC	100% EV Ready	45% EV Ready (In Consultation)
City of Port Moody, BC	100% EV Ready	TBD
District of Squamish, BC	100% EV Ready	TBD
City of Surrey, BC	100% EV Ready	20% EV Ready
Township of Langley, BC	1 EV Ready / dwelling	TBD
District of Saanich, BC	100% EV Ready	Varies
City of Nelson, BC	1 EV Ready / dwelling	10% EV Ready
District of West Van., BC	100% EV Ready	TBD
City of Victoria, BC	100% EV Ready	5% EV Ready
City of Toronto, ON	Tier 1 TGS – 25% Tier 2 TGS – 25% Future – in EV Strategy 100% EV Ready	20% EV Ready
Ville de Laval, QC	50% EV Ready	
Previous Ontario Building Code (rescinded)	20% EVSE	20% EVSE

EV READY REQUIREMENTS IN CANADIAN CITIES



EV CHARGING PERFORMANCE REQUIREMENTS

HOW MUCH POWER DO EVS NEED TO CHARGE? It (largely) depends on how far they drive...

VKT by Planning District in the GTHA

HOW MUCH POWER PER VEHICLE IS REQUIRED FOR RESIDENTIAL PARKING IN GTHA?

(ASSUMING ALL PARKING IS MADE EV READY)

- AES modeled appropriate performance requirements
 - Considered:
 - VKT data
 - Average vehicle mix & efficiency
 - Average temperatures
 - Arrival & departure times (conservative)
 - Goal: Ensure enough electricity for next days driving >99% of time, and full charge >90% of time

Compare results to *Toronto Green Standard Version 3's* performance requirement:

"The system must be capable of supplying a minimum performance level of 16 kWh average per EVSE, over an 8-hour period, assuming that all parking spaces are in use by a charging EV"

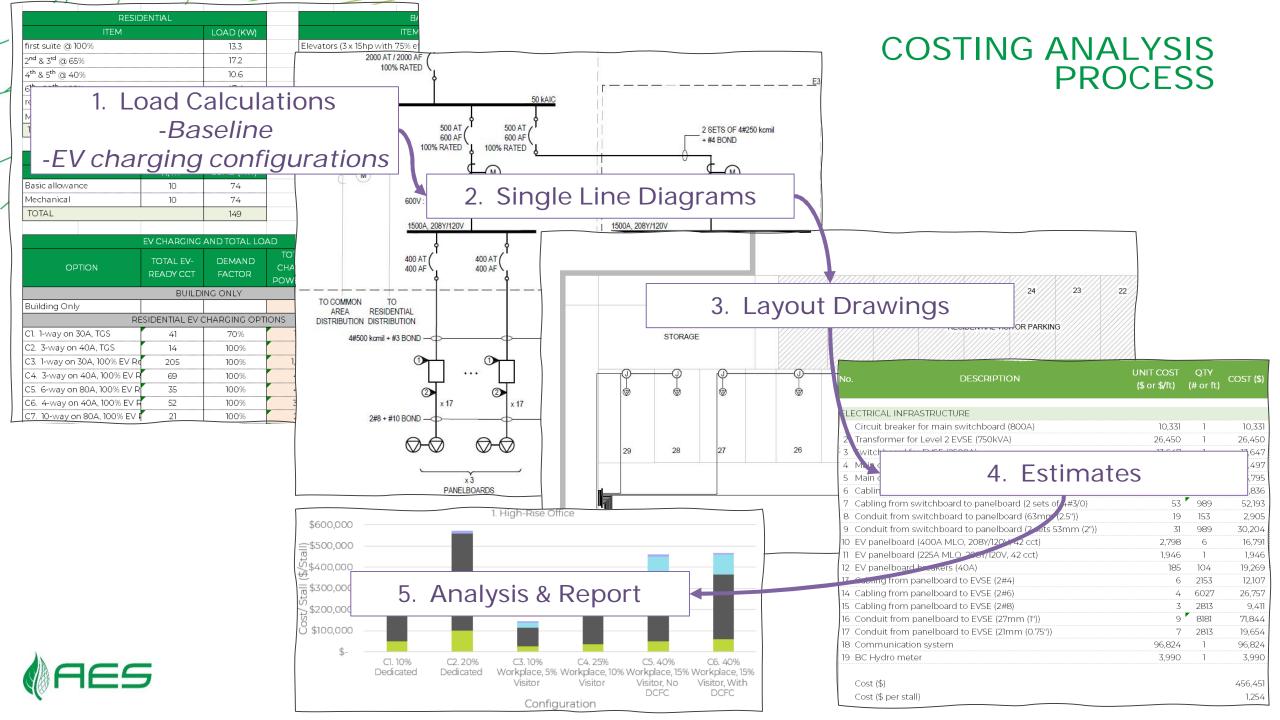
- e.g. 3-share on 40A circuit

- e.g. s

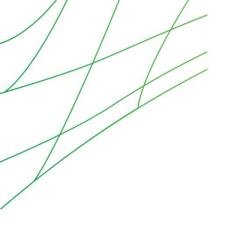
Circuit Breaker Size	Maximum number of EVs (by mean daily weekday VKT)
	45km or less
20A	1
30A	2
40A	4
50A	5
60A	6
70A	8
80A	10
100A	12
125 A	15 DE

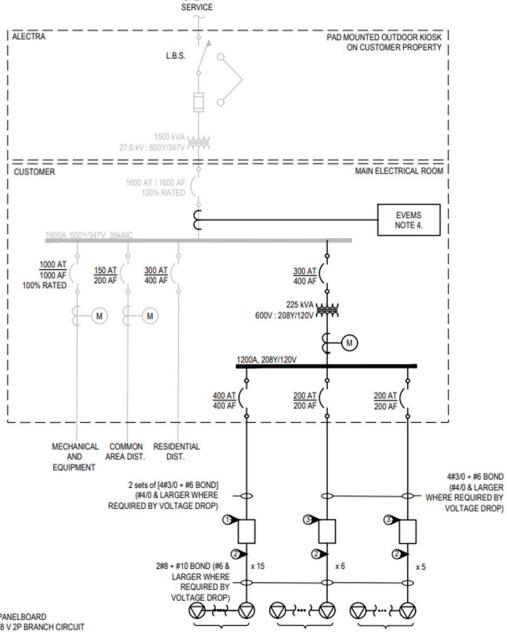
HOW MUCH POWER PER VEHICLE IS REQUIRED FOR RESIDENTIAL PARKING IN GTHA?

(ASSUMING ALL PARKING IS MADE EV READY)


Circuit Breaker	Maximum number of EVs (by mean daily weekday VKT)						
Size	45km or less	50km	55km	60km	65km	70km	
20A	1						
30A	2	2	1	1	1	1	
40A	4	3	3	2	2	2	
50A	5	4	4	3	3	2	
60A	6	5	5	4	4	3	
70A	8	7	6	5	5	4	
80A	10	8	7	6	6	5	
100A	12	10	9	8	7	7	
125A	15	14	12	11	10	9	

COSTING STUDY





RESIDENTIAL BUILDING ARCHETYPES

		Parking	g Stalls	
Archetype	Storeys	Number of Units	Resident	Visitor
High-Rise	16	405	369	61
Mid-Rise	7	151	119	38
Townhouse	3	19	38	5
Single Family	3	22	44	7

UTILITY

EXAMPLE DESIGN – MID-RISE SCENARIO C7

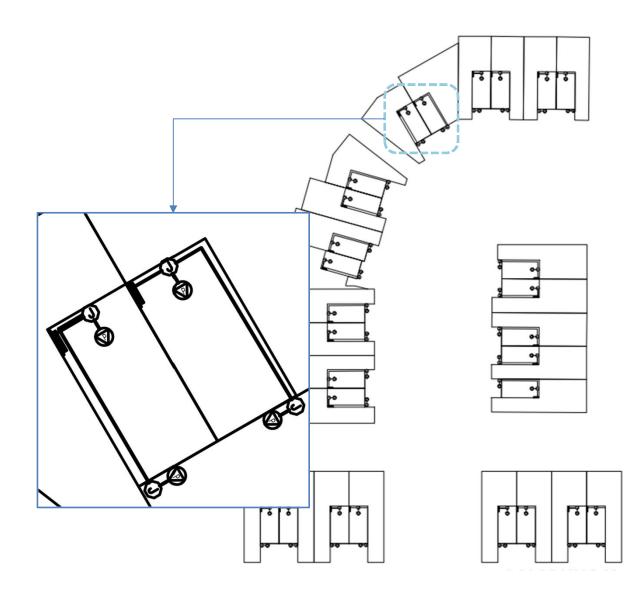
4-SHARE ON 40A BRANCH CIRCUITS, WITH SERVICE MONITORING

- 1. 400 A, 208Y/120V 42 CCT PANELBOARD
- 2. 4 EV STALLS PER 40 A, 208 V 2P BRANCH CIRCUIT
- 3. 225 A, 208Y/120V 42 CCT PANELBOARD
- EVEMS PROVIDES CONTROL IN ACCORDANCE WITH CEC RULE 8-106 10).

GENERAL NOTES:

- A) TOTAL EVSE CIRCUITS: 26
- B) TOTAL EVSE OUTLETS: 104

EXAMPLE DESIGN – MID-RISE SCENARIO C7 4-SHARE ON 40A BRANCH CIRCUITS, WITH SERVICE MONITORING



DESIGNING A BETTER TOMORROW

UTILITY UTILITY SERVICE SERVICE 100 A 100 A 4#3 + #5 BOND ---2#5 + #10 BOND --LOAD MISER DRYER **PANELBOARDS**

EXAMPLE DESIGN – TOWNHOUSE C3 2-SHARE ON 40A BRANCH CIRCUITS, WITH LOAD SWITCHING (LOAD MISER)

KEYNOTES

- 100A, 205Y/120V 42 CCT PANELBOARD
- 2 EV STALLS PER 40 A, 205 V BRANCH CIRCUIT
- 3. 40A LOAD MISER.

EXAMPLE COSTING – MID-RISE SCENARIO C7 4-SHARE ON 40A BRANCH CIRCUITS, WITH SERVICE MONITORING

Nb.	DESCRI PTI ON	UNIT COST (\$ or \$/ft)	QTY (# or ft)	COST (\$)
ELECTRI CAL I NFRAST	RUCTURE			
1 Circuit breaker	for EV distribution board (400A)	6, 512	1	6, 51.2
2 600V : 208Y/120	DV. 225 kVA transformer	9, 496	1	9, 496
3 EV distribution	n board (1200A)	12, 585	1	12, 585
4 Circuit breaker	for EV panel board (400A)	6, 512	1	6, 51.2
5 Circuit breaker	for EV panel board (200A)	3, 809	2	7, 61 9
6 Cabling froms	vitchboard to panelboard (2 sets of 4#3/0)	60	669	40, 489
7 Conduit from E	/switchboard to panelboard (2 sets of 53nmm(2"))	35	669	23, 429
8 EV panel board I	oreaker (40A)	232	30	6, 946
9 400A MLO 208Y/	120V, 42 cct panel board	3, 121	2	6, 242
10 225A MLO 208Y/	120V. 42 cct panel board	2, 184	2	4, 368
11 Cabling from pa	anel board to EVSE (2#8)	4	2992	12, 407
12 Conduit from pa	nnelboard to EVSE (21 mm (3/4"))	9	2992	25, 983
13 Conmunication s	yst em	27, 664	1	27, 664
14 Utility meter		3, 990	1	3, 990
Cost (\$)				194, 241
Cost (\$ ner st:	al I)			1 ጸ6ጸ

EXAMPLE COSTING – MID-RISE SCENARIO C7 4-SHARE ON 40A BRANCH CIRCUITS, WITH SERVICE MONITORING

Nb.	DESCRI PTI ON	UNIT COST (\$ or \$/ft)	QTY (# or ft)	COST (\$)	MULTI PLI ER FOR LATER COSTS	LATER COST (\$)
ELECTRI CAL I NFRAST		/ 510	4	(F10	2	10 505
	for EV distribution board (400A)	6, 51.2	l	6, 51 2	3	19, 535
2 600V : 208Y/120	DV. 225 kVA transformer	9, 496	1	9, 496	3	28, 487
3 EV distribution	n board (1200A)	12, 585	1	12, 585	5	62, 923
4 Circuit breaker	for EV panel board (400A)	6, 51 2	1	6, 512	3	19, 535
5 Circuit breaker	for EV panel board (200A)	3, 809	2	7, 61 9	3	22, 857
6 Cabling from sv	nitchboard to panelboard (2 sets of 4#3/0)	60	669	40, 489	2	80, 979
7 Conduit from EV	/ switchboard to panelboard (2 sets of 53nm (2"))	35	669	23, 429	5	117, 145
8 EV panel board b	oreaker (40A)	232	30	6, 946	2	13, 892
9 400A MLO 208Y/	120V, 42 cct panel board	3, 121	2	6, 242	3	18, 725
10 225A MLO 208Y/	120V, 42 cct panel board	2, 184	2	4, 368	3	13, 103
11 Cabling from pa	anel board to EVSE (2#8)	4	2992	12, 407	2	24, 81 4
12 Conduit from pa	anelboard to EVSE (21 mm (3/4"))	9	2992	25, 983	5	1 29, 91 5
13 Conmunication s	system	27, 664	1	27, 664	3	82, 992
14 Utility meter		3, 990	1	3, 990	2	7, 980
Cost (\$)				194, 241		642, 883
Cost (\$ ner sta	al I Y			1 868		6 1 R2

HIGH RISE SCENARIOS

#	Electrical configuration description	% Residential Parking that is EV Ready	Nominal EVSE Power (kW)	EVSE per Circuit	Circuit Breaker Rating (A)
C1	TGS v3 - Dedicated 40A circuit	20%	6.7	1	40
C2	TGS v3 - 3-share on 40A	20%	6.7	3	40
C3	Dedicated 40A circuit	100%	6.7	1	40
C4	3-share on 40A	100%	6.7	2	40
C5	4-share on 40A	100%	6.7	4	40
C6	10-share on 80A	100%	6.7	10	80
C7	4-share on 40A, service monitoring	100%	6.7	4	40

For all High Rise scenarios, we considered locating the building in both Toronto Hydro and Alectra utility territory, reflecting different primary distribution voltages.

MID RISE SCENARIOS

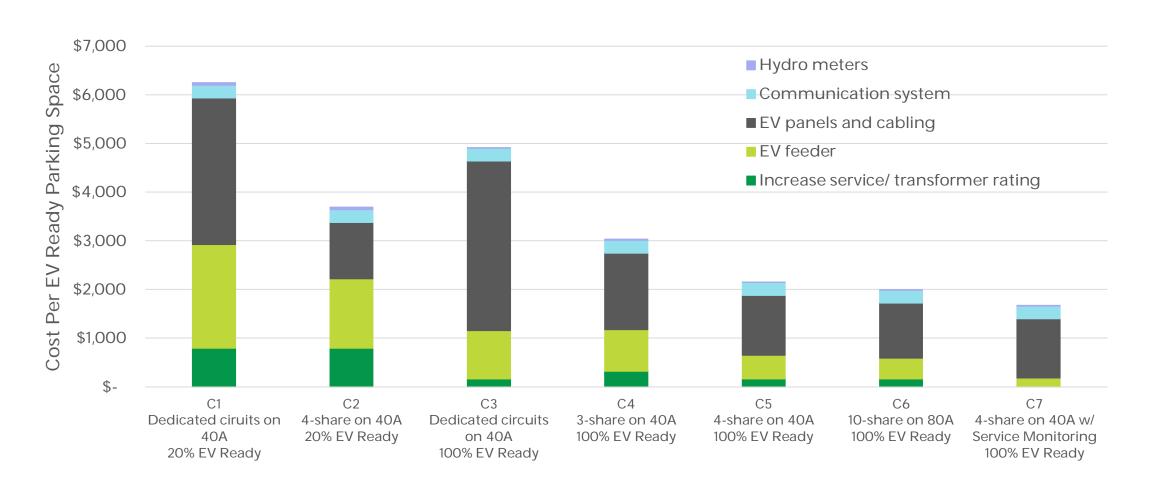
#	Electrical configuration description	% Residential Parking that is EV Ready	Nominal EVSE Power (kW)	EVSE per Circuit	Circuit Breaker Rating (A)
C1	TGS v3, Dedicated 40A circuit	20%	6.7	1	40
C2	TGS v3, 3-share on 40A	20%	6.7	3	40
C3	Dedicated 40A circuit	100%	6.7	1	40
C4	3-share on 40A	100%	6.7	2	40
C5	4-share on 40A	100%	6.7	4	40
C6	10-share on 80A	100%	6.7	10	80
C7	4-share on 40A, service monitoring	100%	6.7	4	40

TOWNHOUSE SCENARIOS

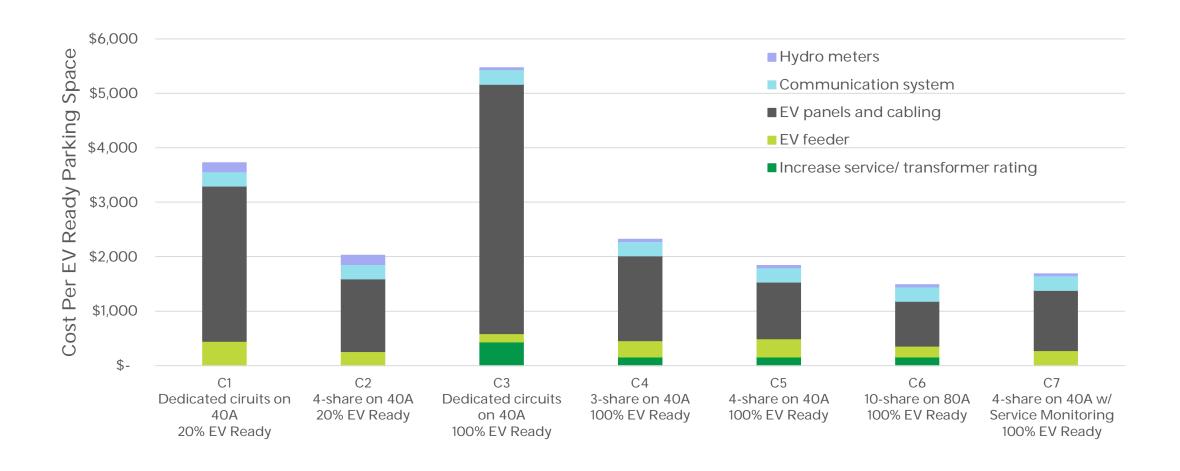
#	Electrical configuration description	% Residential Parking that is EV Ready	Nominal EVSE Power (kW)	EVs per Circuit	Circuit Breaker Rating (A)
C1	2-share on 40A (one EV Ready outlet per household)	100%	6.7	2	40
C2	2-share on 40A with service monitoring	100%	6.7	2	40
C3	2-share on 40A with load switching	100%	6.7	2	40

SINGLE FAMILY SUBDIVISION SCENARIOS

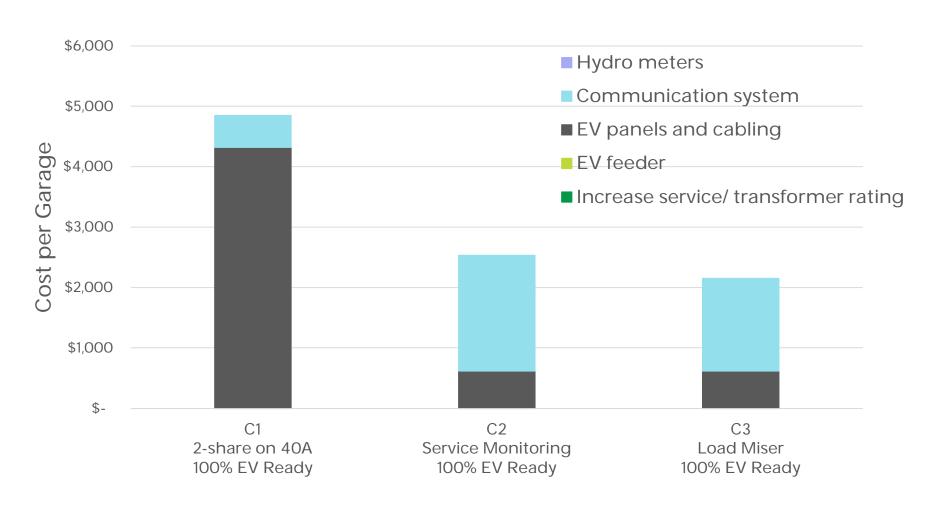
#	Electrical configuration description	% Residential Parking that is EV Ready	Nominal EVSE Power (kW)	EVs per Circuit	Circuit Breaker Rating (A)
C1	2-share on 40A (one EV Ready outlet per household)	100%	6.7	2	40
C2	2-share on 40A with service monitoring	100%	6.7	2	40



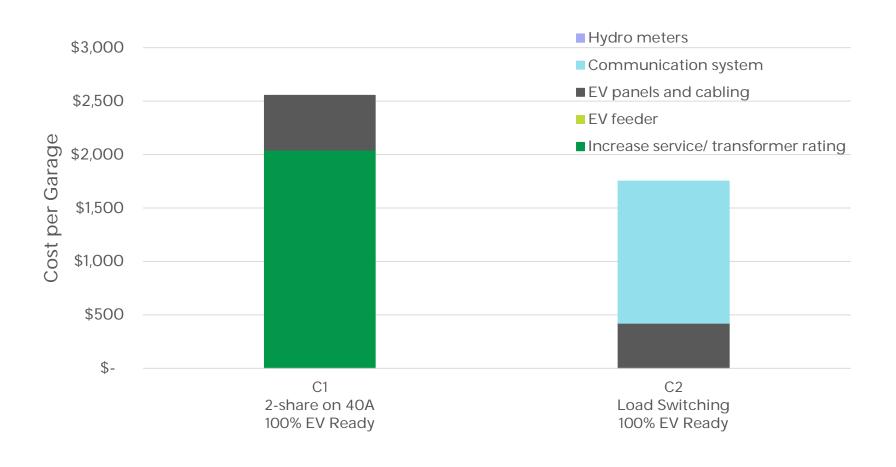
RESULTS



RESULTS HIGH RISE (ALECTRA TERRITORY) COST PER EV READY PARKING SPACE



RESULTS MID RISE COST PER EV READY PARKING SPACE



RESULTS TOWNHOUSE COST PER GARAGE


RESULTS SINGLE FAMILY SUBDIVISION COST PER GARAGE

COST OF EV READY NEW CONSTRUCTION VERSUS INCREMENTAL RETROFITS Example - High Rise

High Rise - C7 4-share on 40A w/ Service Monitoring

DESIGNING A BETTER TOMORROW

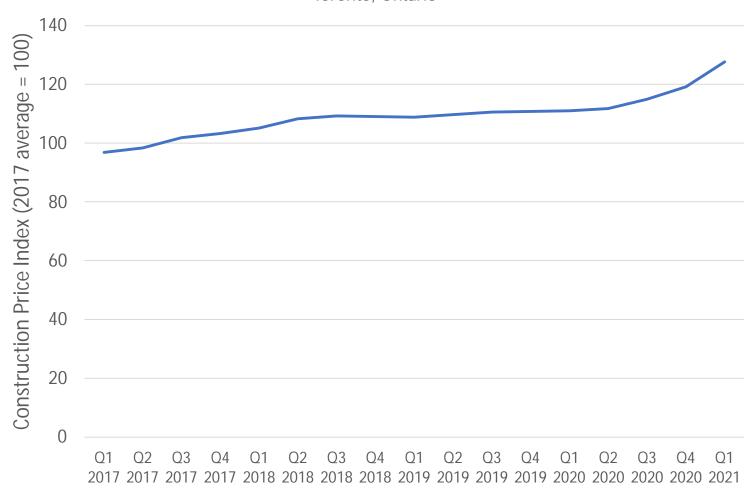
CONCLUSIONS FROM COSTING STUDY

- 100% EV Ready can be achieved for ~\$1500 per parking space (apartments w parkade), or per garage (ground-oriented w private onsite parking attached to unit) with conservative assumptions
 - Design for EVEMS
- Much lower cost and complexity than retrofitting EV Ready parking

THANK YOU!

brendan.mcewen@aesengr.com

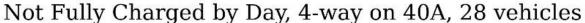
OTHER CONSIDERATIONS

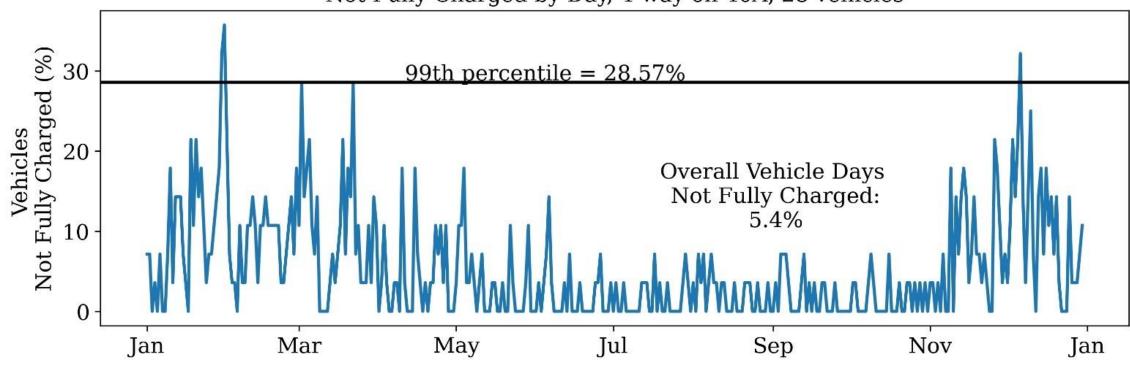

DEVELOPMENTS' CAPITAL CONTRIBUTION FOR UTILITY EXTENSIONS

- Developments' "capital contribution" is difference between the present value of the utility expansion's capital and maintenance costs, and the present value of the projected revenue associated with the development (see *Distribution System Code* Section 3.2 & Appendix B).
- Utilities evaluate revenue forecast (i.e. estimated average kWh and kW charges) for future customers (Distribution System Code 3.2.20 & Appendix B).
 - For expansions that require a capital contribution, expansion deposit for the present value of the forecasted revenues (*Distribution System Code* 3.2.20).
 - Utilities annually return the percentage of the expansion deposit in proportion to the actual connections (for residential rate customers) or actual demand (for commercial developments) each year for five years (*Distribution System Code* 3.2.23) [21].
 - Recommended that utilities consider utility policies that accurately reflect how EV charging is likely to emerge over 5 years.
- Cost of increasing utility services differs substantially between different development sites.
 - Service monitoring can avoid service size upgrades.

CONSTRUCTION COSTS

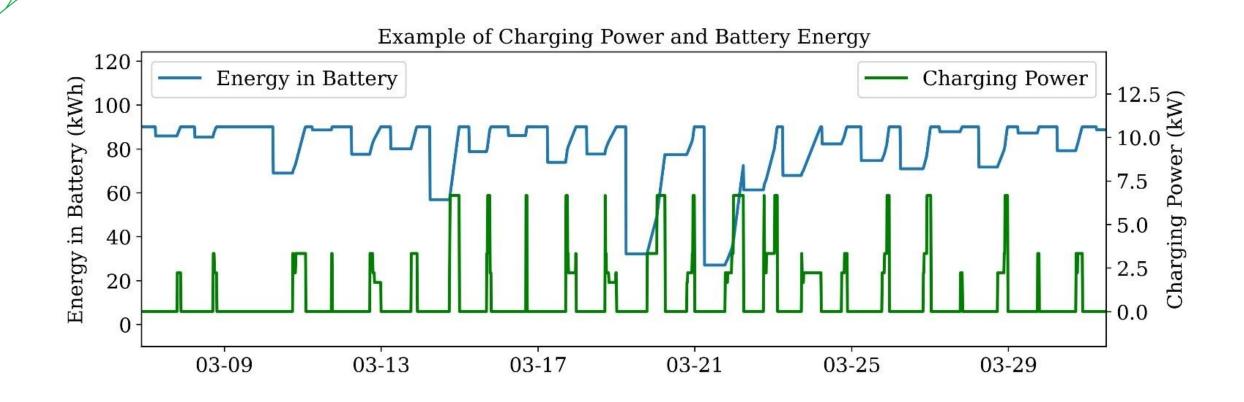
EV'S LI-ION BATTERY COSTS ARE DECLINING





EV CHARGING PERFORMANCE REQUIREMENTS

PERCENT OF VEHICLES THAT ARE NOT FULLY CHARGED THROUGHOUT A YEAR OF SIMULATIONS



PERCENT OF VEHICLES THAT CANNOT COMPLETE THE NEXT DAY'S DRIVING THROUGHOUT A YEAR OF SIMULATIONS

CHARGING POWER AND ENERGY IN THE BATTERY OF AN EXAMPLE VEHICLE FOR A FEW SIMULATED WEEKS IN MARCH 2019.

RECOMMENDED EV CHARGING PERFORMANCE REQUIREMENTS FOR (MOST) GTHA COMMUNITIES

Circuit Breaker Size	Maximum number of EVs (by mean daily weekday VKT)
	45km or less
20A	1
30A	2
40A	4
50A	5
60A	6
70A	8
80A	10
100A	12
125A	15

