Greater Toronto Hamilton Area EV Ready Residential Parking New Construction Costing Study

Prepared for the Clean Air Partnership

Brendan McEwen

Director of Electric Mobility & Low Carbon Strategies

AES Engineering

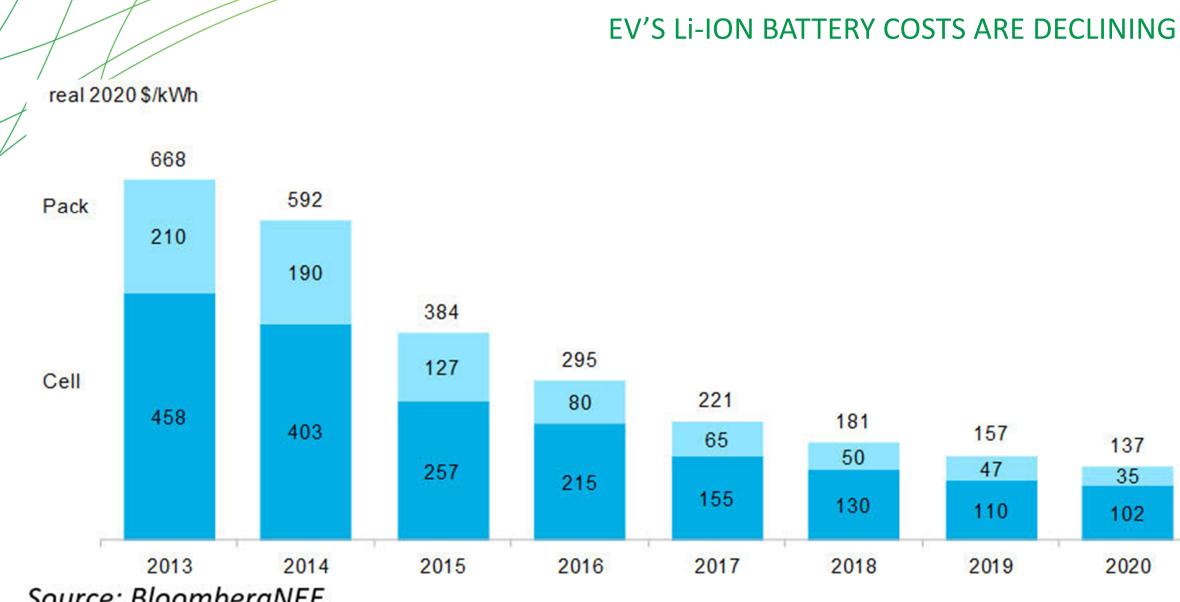
=5

ABOUT THIS STUDY

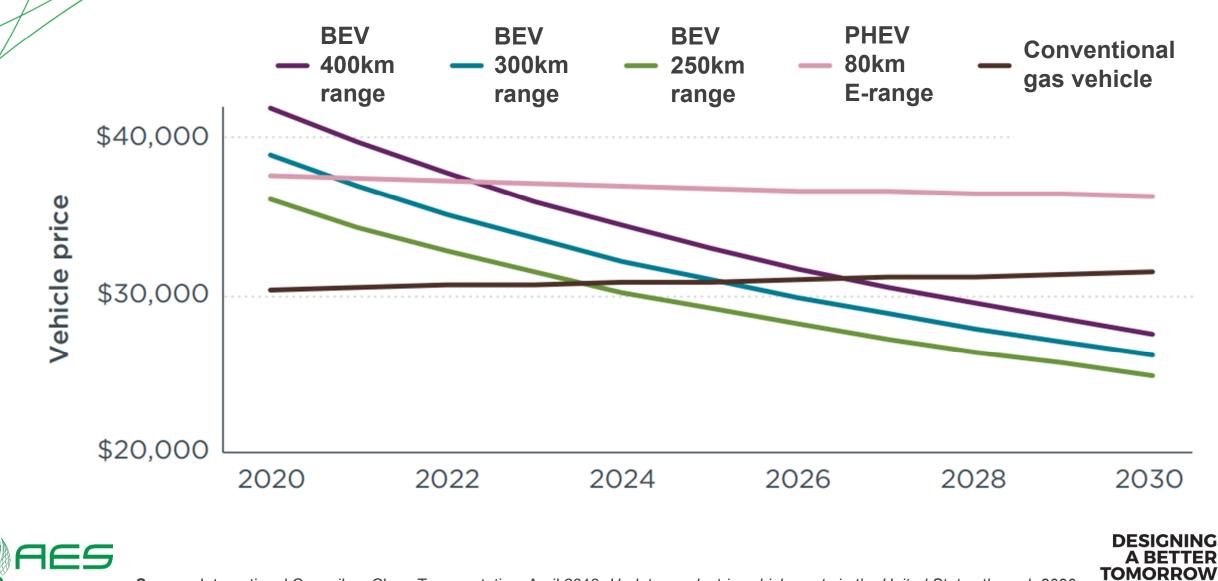
- The Clean Air Partnership (CAP) is supporting local governments in the GTHA considering "EV Ready" requirements for new residential developments.
 - CAP commissioned *Electric Vehicle Charging Infrastructure Costing Study*.
 - Generous support from The Atmospheric Fund.
- This report was prepared by AES Engineering Ltd.
 - Mulvey + Banani International Inc (MBII), provided local design advising and peer review.

OUTLINE

- Background
 - Quick review of EV trends & context
 - Importance of access to home charging
 - About "EV Ready" parking
 - About EV Energy Management Systems
- EV Ready Residential Parking Costing Study
 - Overview of building archetypes
 - Design scenarios
 - Results



EV TRENDS & CONTEXT



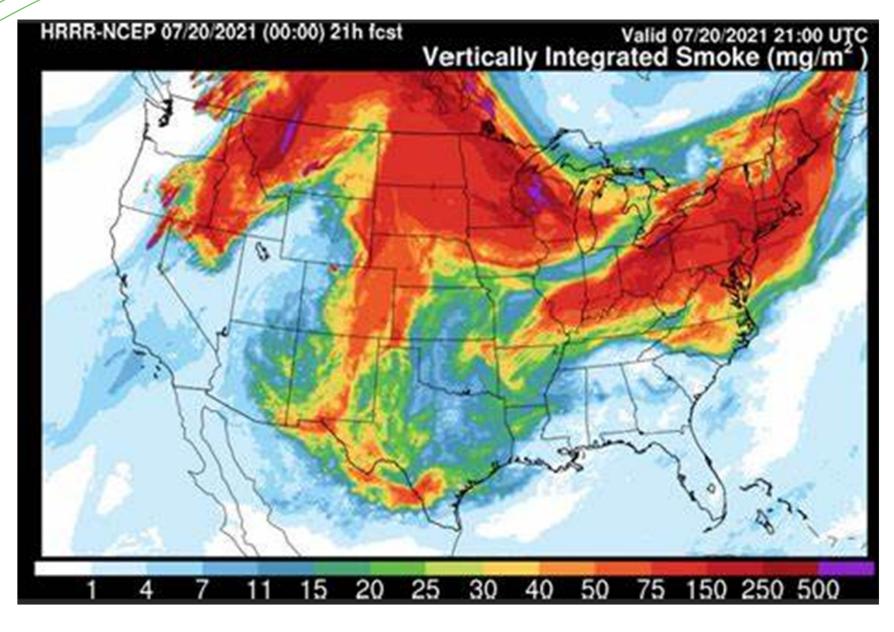
Source: BloombergNEF

EV "PRICE PARITY" (NO INCENTIVES)

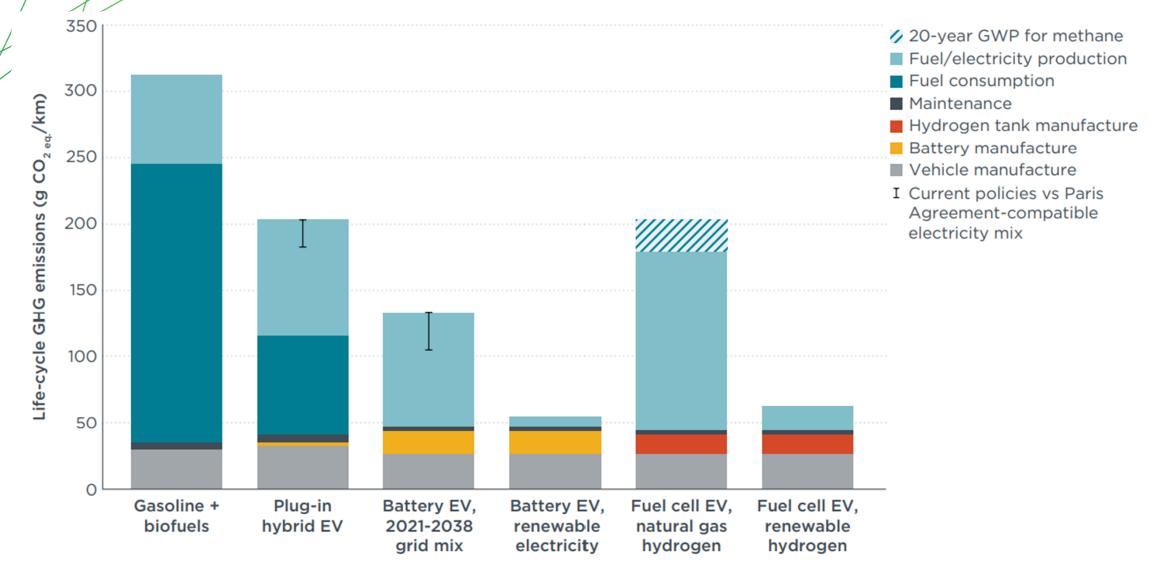
Source: International Council on Clean Transportation. April 2019. Update on electric vehicle costs in the United States through 2030.

POLICY IS DRIVING EV ADOPTION

 In June 2021, the Federal Government announced it would adopt requirements for 100% of passenger vehicle sales to be zero emissions (e.g. EVs) by 2035.



Source: Government of Canada. June 2021. *Building a green economy: Government of Canada to require 100% of car and passenger truck sales be zero-emission by 2035 in Canada*. https://www.canada.ca/en/transport-canada/news/2021/06/building-a-green-economy-government-of-canada-to-require-100-of-car-and-passenger-truck-sales-be-zero-emission-by-2035-in-canada.html

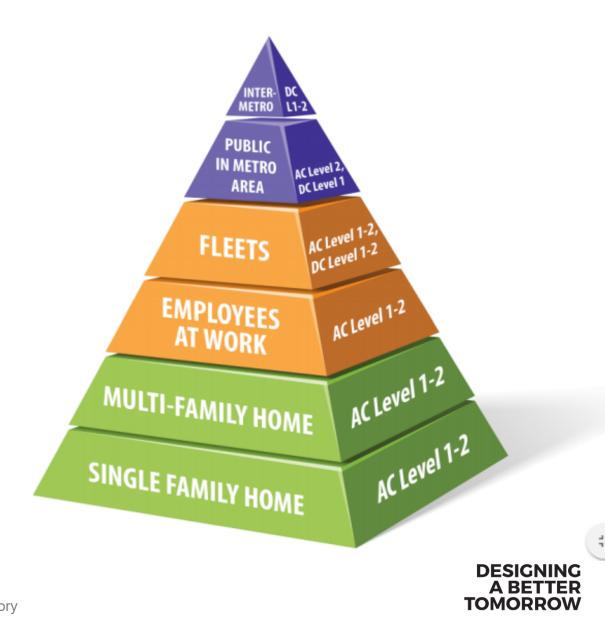


CLIMATE EMERGENCY

EVs ARE A CLIMATE SOLUTION

International Council on Clean Transportation Estimate for Lifecycle Emissions – North America SUV

Source: ICCT. July 2021. <u>A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric</u> passenger cars (theicct.org)



THE NEED TO SUPPORT ACCESS TO EV CHARGING

WHERE DO WE CHARGE?

- "At Home" charging critical to enabling EV adoption
- "At Work" and publiclyaccessible "On the Go" charging are important supplements

IT'S COSTLY & COMPLICATED TO RETROFIT CHARGING INTO MURBs

- Incremental EV charging retrofits are expensive
- Comprehensive (e.g. 100%) EV Ready retrofits can significantly lower costs per parking space.
 - However, it is challenging for condominium associations & rental building owners to invest in these projects.
 - Complicated. Owners lack of expertise.
 - Significant upfront costs.
- It is best to future-proof buildings for EVs at time of construction.

ABOUT EV ENERGY MANAGEMENT SYSTEMS

EV Energy Management Systems (EVEMS)

- EVEMS monitor and control EV loads.
- Advantages include:
 - Reduction in electrical capacity and associated electrical infrastructure costs necessary to provide EV charging.
 - Ability to accommodate greater amount of EV charging within finite electrical capacity of existing buildings.
 - Managing EV loads to maximize value e.g. avoid demand charges; respond to dynamic rates; respond to utility demand response events; use variable renewable energy; etc.
- EVEMS are important to enabling high levels of EV charging in many MURBs, workplaces, and fleet parking applications.

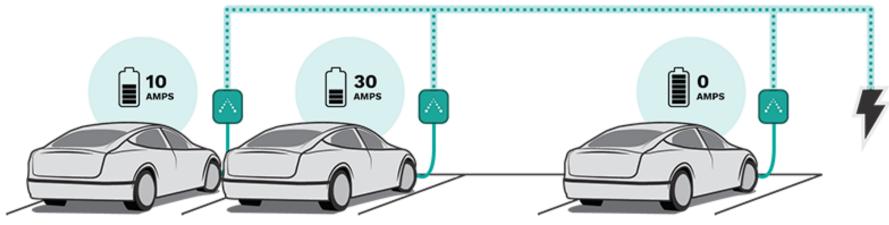
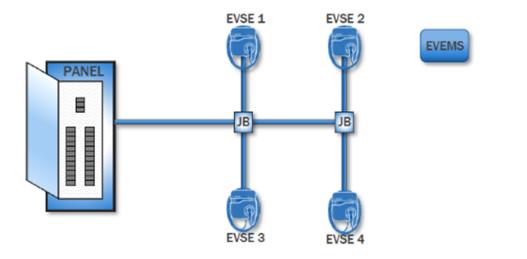
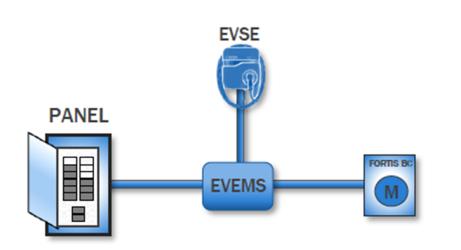
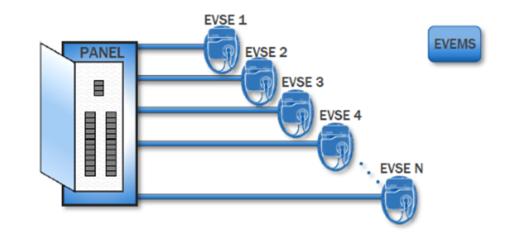
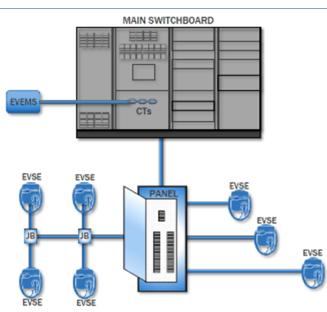




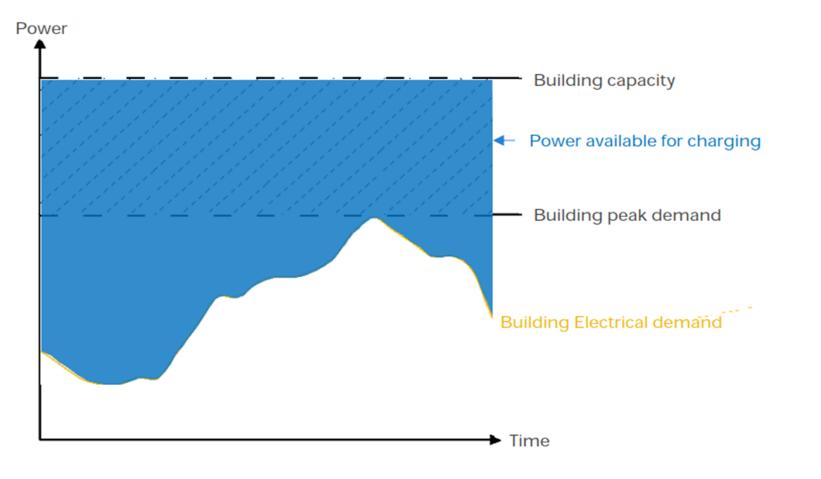
Image Source: Evercharge.


Some Electrical Infrastructure Configurations

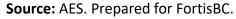

Circuit sharing: Multiple EVSE on a circuit, with control to ensure capacity is not exceeded.

Feeder sharing: on/off control of EVSE based on available capacity on the supply to an electrical panel.

Panel sharing: EVSE loads in excess of panel, with control to ensure capacity is not exceeded.

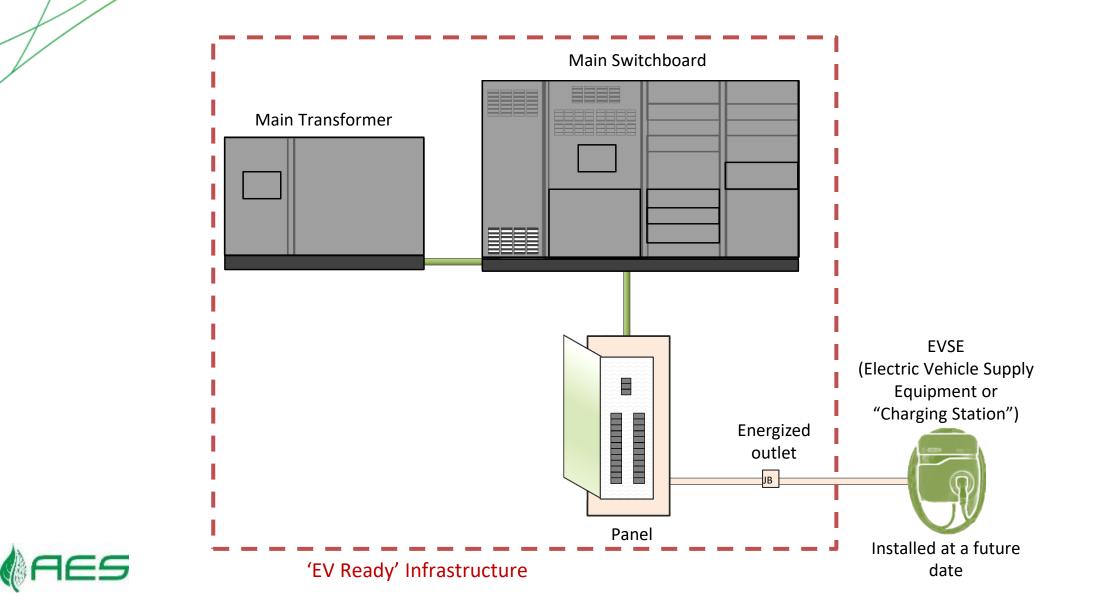

Service monitoring: Monitoring of spare capacity on building's main electrical board; and control of EV loads accordingly.

SERVICE MONITORING EVEMS


DESIGNING

TOMORROW

• Monitoring the main electrical board of a building to determine available spare capacity in real-time, and control of EVSE accordingly.



FUTURE-PROOFING PARKING TO BE "EV READY" LOCAL GOVERNMENT REQUIREMENTS

WHAT IS "EV READY" PARKING?

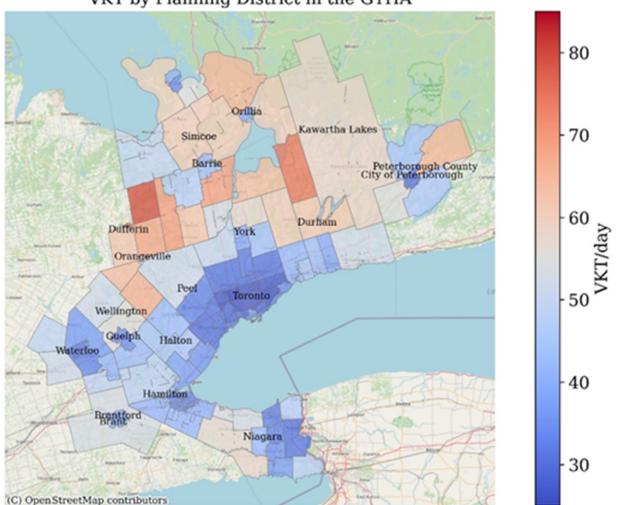
WHAT IS AN "ENERGIZED OUTLET"?

Junction Box

Receptacle

Jurisdiction	Residential	Commercial	
City of Vancouver	100% EV Ready	10% EV Ready	
City of Richmond	100% EV Ready	TBD	
City of Port Coquitlam	1 EV Cap. / dwelling	TBD	
City of Burnaby	100% EV Ready	TBD	
City of Coquitlam	1 EV Ready / dwelling	TBD	
City of New Westminster	100% EV Ready	TBD	
City of North Vancouver	100% EV Ready	45% EV Ready (In Consultation)	
City of Port Moody	100% EV Ready	TBD	
District of Squamish	100% EV Ready	TBD	
City of Surrey	100% EV Ready	20% EV Ready	
Township of Langley	1 EV Ready / dwelling	TBD	
District of Saanich	100% EV Ready	Varies	
City of Nelson	1 EV Ready / dwelling	10% EV Ready	
District of West Van.	100% EV Ready	TBD	
City of Victoria	100% EV Ready	5% EV Ready	
City of Toronto	20% EV Ready / EVSE 80% Conduit	20% EV Ready / EVSE	
	Future – in EV Strategy 100% EV Ready	80% Conduit / Partial	
Previous Ontario Building Code (rescinded)	20% EVSE	20% EVSE	

EV READY REQUIREMENTS IN CANADIAN CITIES



EV CHARGING PERFORMANCE REQUIREMENTS

HOW MUCH POWER DO EVs NEED TO CHARGE? It (largely) depends on how far they drive...

VKT by Planning District in the GTHA

Data from: Transportation for Tomorrow Survey. <u>www.transportationtomorrow.on.ca</u> Special thanks to the University of Toronto Data Management Group!

HOW MUCH POWER PER VEHICLE IS REQUIRED FOR RESIDENTIAL PARKING IN GTHA?

(ASSUMING ALL PARKING IS MADE EV READY)

- AES modeled appropriate performance requirements
 - Considered:
 - VKT data
 - Average vehicle mix & efficiency
 - Average temperatures
 - Arrival & departure times (conservative)
 - Goal: Ensure enough electricity for next days driving >99% of time, and full charge >90% of time

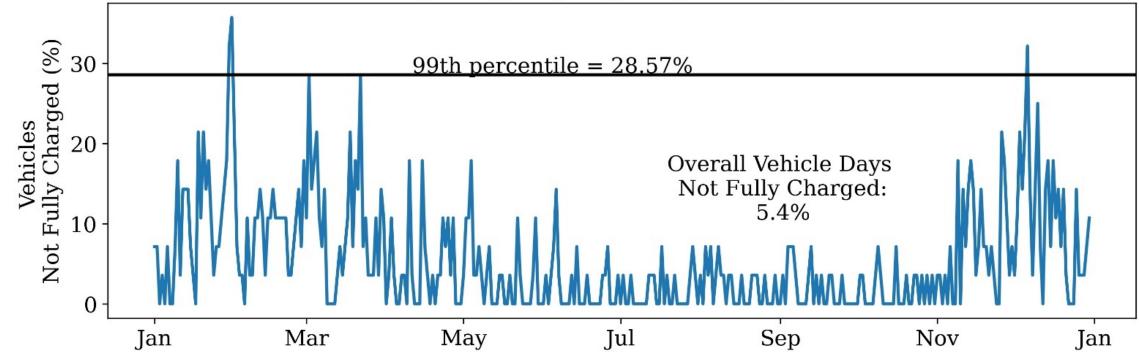
Compare results to *Toronto Green Standard Version 3's performance requirement*:

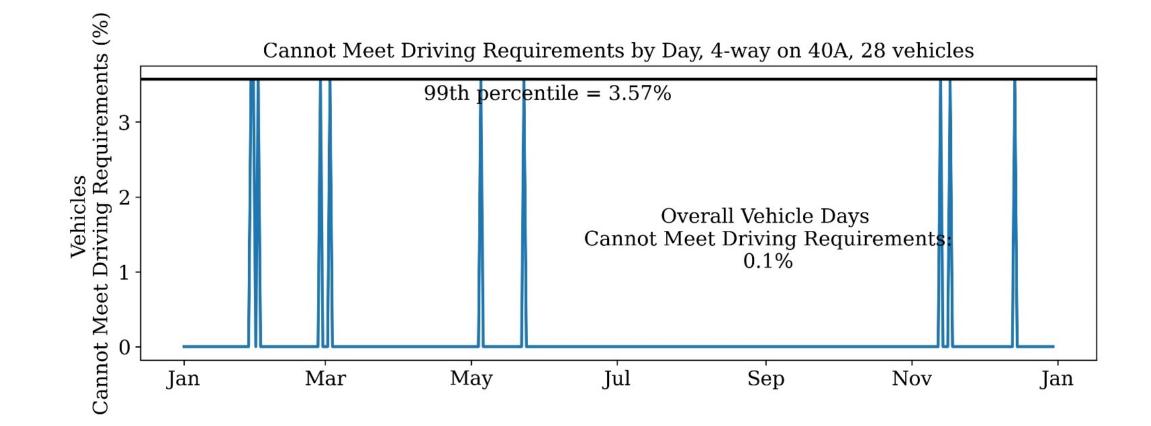
"The system must be capable of supplying a minimum performance level of 16 kWh average per EVSE, over an 8-hour period, assuming that all parking spaces are in use by a charging EV" – **e.g. 3-share on 40A circuit**

Circuit Breaker Size	Maximum number of EVs (by mean daily weekday VKT)
	45km or less
20A	1
30A	2
40A	4
50A	5
60A	6
70A	8
80A	10
100A	12
125A	15

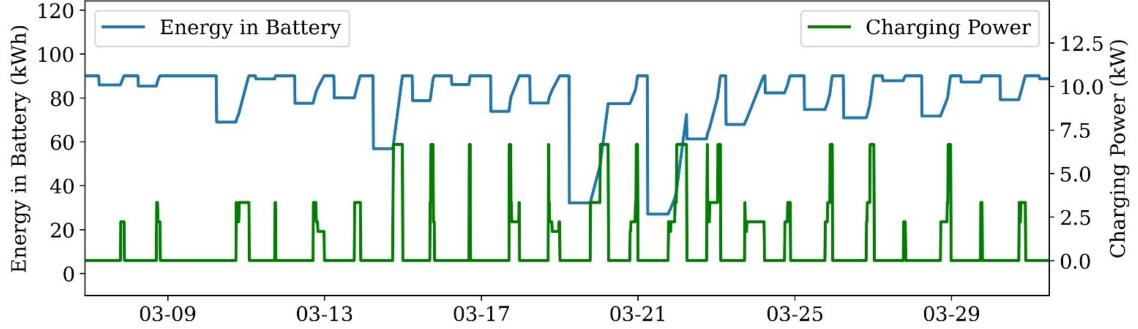
HOW MUCH POWER PER VEHICLE IS REQUIRED FOR RESIDENTIAL PARKING IN GTHA?

(ASSUMING ALL PARKING IS MADE EV READY)


Circuit	Maximum number of EVs (by mean daily weekday VKT)					
Breaker Size	45km or less	50km	55km	60km	65km	70km
20A	1					
30A	2	2	1	1	1	1
40A	4	3	3	2	2	2
50A	5	4	4	3	3	2
60A	6	5	5	4	4	3
70A	8	7	6	5	5	4
80A	10	8	7	6	6	5
100A	12	10	9	8	7	7
125A	15	14	12	11	10	9


PERCENT OF VEHICLES THAT ARE NOT FULLY CHARGED THROUGHOUT A YEAR OF SIMULATIONS

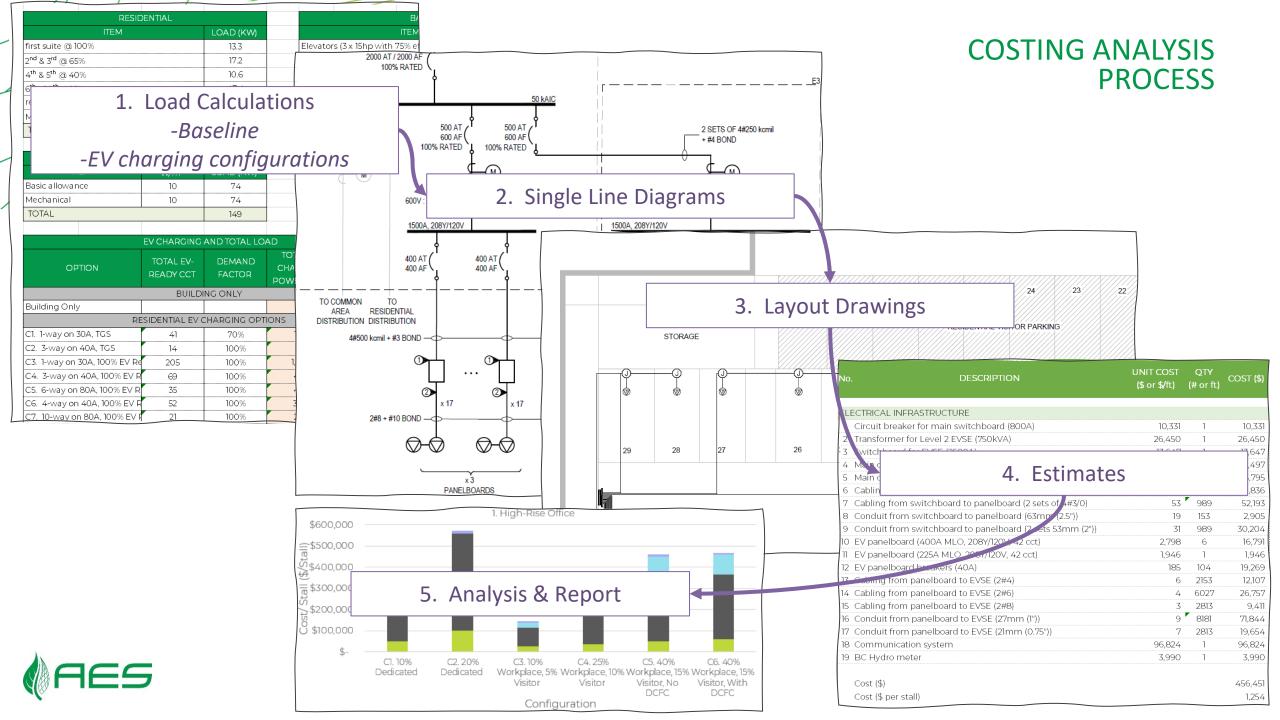
Not Fully Charged by Day, 4-way on 40A, 28 vehicles

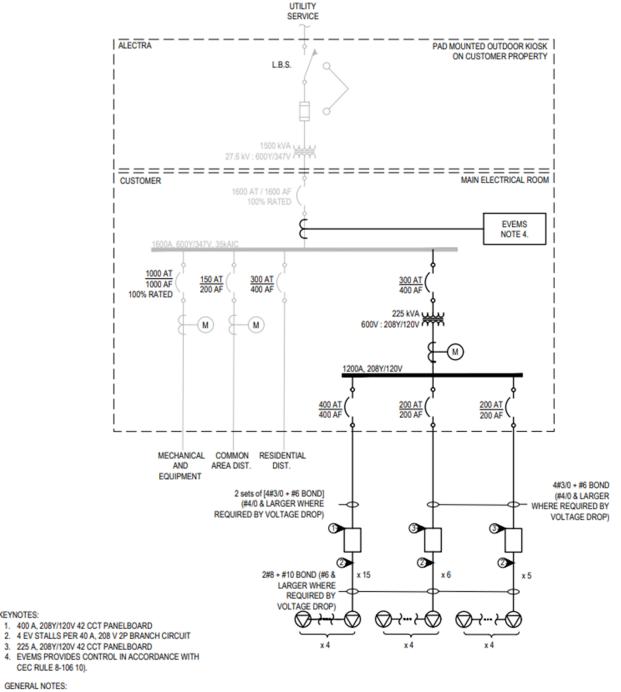

PERCENT OF VEHICLES THAT CANNOT COMPLETE THE NEXT DAY'S DRIVING THROUGHOUT A YEAR OF SIMULATIONS

CHARGING POWER AND ENERGY IN THE BATTERY OF AN EXAMPLE VEHICLE FOR A FEW SIMULATED WEEKS IN MARCH 2019.

RECOMMENDED EV CHARGING PERFORMANCE REQUIREMENTS FOR (MOST) GTHA COMMUNITIES

Circuit Breaker Size	Maximum number of EVs (by mean daily weekday VKT)
Size	45km or less
20A	1
30A	2
40A	4
50A	5
60A	6
70A	8
80A	10
100A	12
125A	15





COSTING STUDY

EXAMPLE DESIGN - MID-RISE SCENARIO C7 4-SHARE ON 40A BRANCH CIRCUITS,

WITH SERVICE MONITORING

DESIGNING **A BETTER** TOMORROW

A) TOTAL EVSE CIRCUITS: 26

KEYNOTES:

B) TOTAL EVSE OUTLETS: 104

EXAMPLE DESIGN – MID-RISE SCENARIO C7 4-SHARE ON 40A BRANCH CIRCUITS, WITH SERVICE MONITORING

DESIGNING

TOMORROW

A BETTER

EXAMPLE COSTING – MID-RISE SCENARIO C7 4-SHARE ON 40A BRANCH CIRCUITS, WITH SERVICE MONITORING

No.	DESCRIPTION	UNIT COST (\$ or \$/ft)	QTY (# or ft)	Cost (\$)
ELE	CTRICAL INFRASTRUCTURE			
1	Circuit breaker for EV distribution board (400A)	6 , 512	1	6 , 512
2	600V : 208Y/120V, 225 kVA transformer	9,496	1	9,496
3	EV distribution board (1200A)	12 , 585	1	12 , 585
4	Circuit breaker for EV panelboard (400A)	6 , 512	1	6 , 512
5	Circuit breaker for EV panelboard (200A)	3,809	2	7,619
6	Cabling from switchboard to panelboard (2 sets of 4#3/0)	60	669	40,489
7	Conduit from EV switchboard to panelboard (2 sets of 53mm (2"))	35	669	23,429
8	EV panelboard breaker (40A)	232	30	6 , 946
9	400A MLO, 208Y/120V, 42 cct panelboard	3,121	2	6,242
10	225A MLO, 208Y/120V, 42 cct panelboard	2,184	2	4,368
11	Cabling from panelboard to EVSE (2#8)	4	2992	12 , 407
12	Conduit from panelboard to EVSE (21mm (3/4"))	9	2992	25 , 983
13	Communication system	27,664	1	27 , 664
14	Utility meter	3,990	1	3,990

Cost (\$))	194,241	
Cost (\$	per stall)	1,868	

EXAMPLE COSTING – MID-RISE SCENARIO C7 4-SHARE ON 40A BRANCH CIRCUITS, WITH SERVICE MONITORING

No.	DESCRIPTION	UNIT COST (\$ or \$/ft)	QTY (# or ft)	Cost (\$)	MULTIPLIER FOR LATER COSTS	LATER COST (\$
ELECTRICAL INFRASTR	UCTURE					
1 Circuit breaker	for EV distribution board (400A)	6 , 512	1	6 , 512	3	19 , 535
2 600V : 208Y/120V	/, 225 kVA transformer	9,496	1	9,496	3	28 , 487
3 EV distribution	board (1200A)	12 , 585	1	12 , 585	5	62 , 923
4 Circuit breaker	for EV panelboard (400A)	6 , 512	1	6 , 512	3	19 , 535
5 Circuit breaker	for EV panelboard (200A)	3,809	2	7,619	3	22,857
6 Cabling from swi	itchboard to panelboard (2 sets of $4#3/0$)	60	669	40,489	2	80 , 979
7 Conduit from EV	switchboard to panelboard (2 sets of 53mm (2"))	35	669	23,429	5	117,145
8 EV panelboard b	reaker (40A)	232	30	6,946	2	13,892
9 400A MLO, 208Y/1	120V, 42 cct panelboard	3,121	2	6,242	3	18,725
10 225A MLO, 208Y/1	120V, 42 cct panelboard	2,184	2	4,368	3	13,103
11 Cabling from par	nelboard to EVSE (2#8)	4	2992	12,407	2	24 , 814
12 Conduit from par	nelboard to EVSE (21mm (3/4"))	9	2992	25,983	5	129 , 915
13 Communication sy	ystem	27 , 664	1	27,664	3	82 , 992
14 Utility meter		3,990	1	3,990	2	7 , 980
				104 041		640.000

Cost (\$)194,241642,883Cost (\$ per stall)1,8686,182

RESIDENTIAL BUILDING ARCHETYPES

			Parking Stalls		
Archetype	StoreysNumber of UnitsResident		Visitor		
High-Rise	16	405	369	61	
Mid-Rise	7	151	119	38	
Townhouse	3	19	38	5	
Single Family	3	22	44	7	

HIGH RISE SCENARIOS

#	Electrical configuration description	% Residential Parking that is EV Ready	Nominal EVSE Power (kW)	EVSE per Circuit	Circuit Breaker Rating (A)
C1	TGS v3 - Dedicated 40A circuit	20%	6.7	1	40
C2	TGS v3 - 3-share on 40A	20%	6.7	3	40
C3	Dedicated 40A circuit	100%	6.7	1	40
C4	3-share on 40A	100%	6.7	2	40
C5	4-share on 40A	100%	6.7	4	40
C6	10-share on 80A	100%	6.7	3	80
C7	4-share on 40A, service monitoring	100%	6.7	4	40

For all High Rise scenarios, we considered locating the building in both Toronto Hydro and Alectra utility territory, reflecting different primary distribution voltages.

MID RISE SCENARIOS

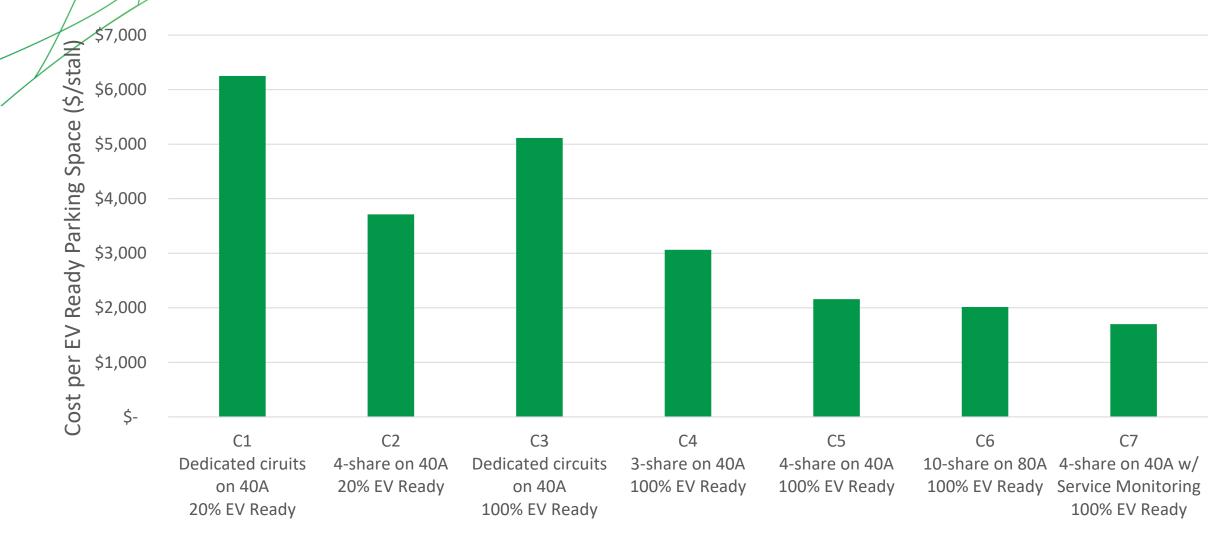
# Electrical configuration descrip		% Residential Parking that is EV Ready	Nominal EVSE Power (kW)	EVSE per Circuit	Circuit Breaker Rating (A)
C1	TGS v3, Dedicated 40A circuit	20%	6.7	1	40
C2	TGS v3, 3-share on 40A	20%	6.7	3	40
C3	Dedicated 40A circuit	100%	6.7	1	40
C4	3-share on 40A	100%	6.7	2	40
C5	4-share on 40A	100%	6.7	4	40
C6	10-share on 80A	100%	6.7	3	80
C7	4-share on 40A, service monitoring	100%	6.7	4	40

TOWNHOUSE SCENARIOS

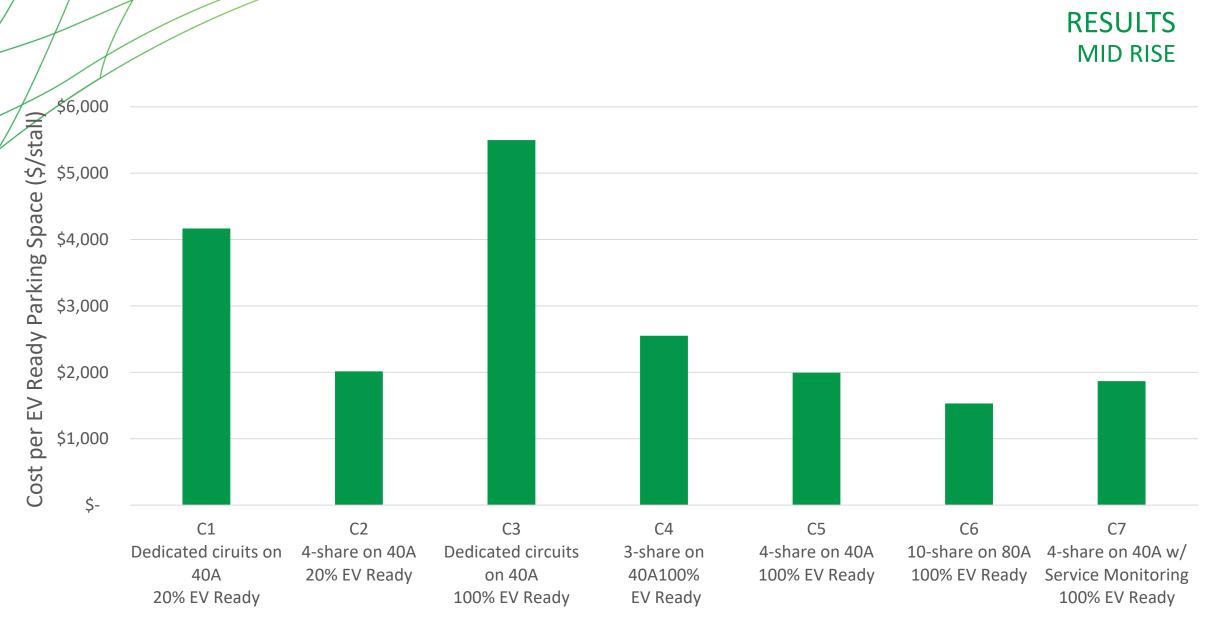
7	#	Electrical configuration description	% Residential Parking that is EV Ready	Nominal EVSE Power (kW)	EVs per Circuit	Circuit Breaker Rating (A)
	C1	2-share on 40A (one EV Ready outlet per household)	100%	6.7	2	40
	C2	2-share on 40A with service monitoring	100%	6.7	2	40
	C3	2-share on 40A with load switching	100%	6.7	2	40

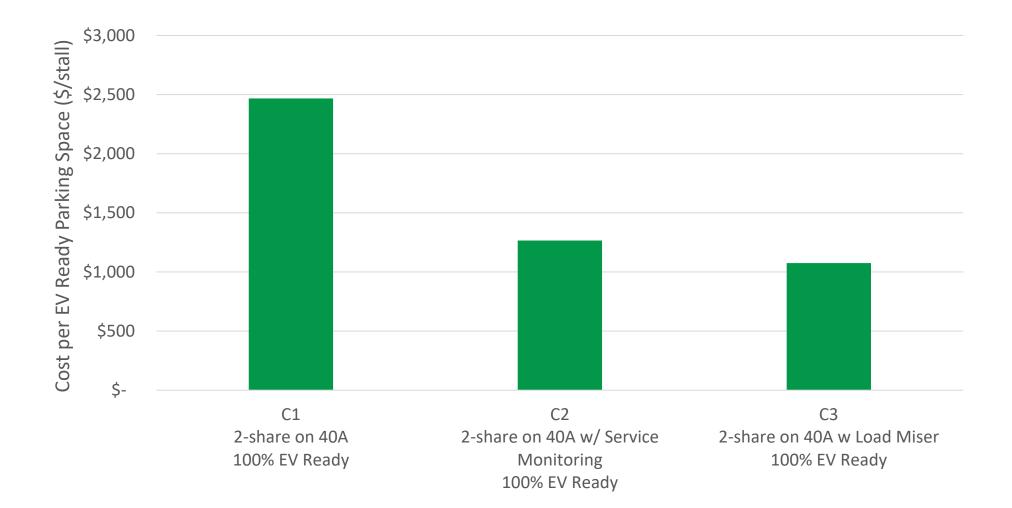
SINGLE FAMILY SUBDIVISION SCENARIOS

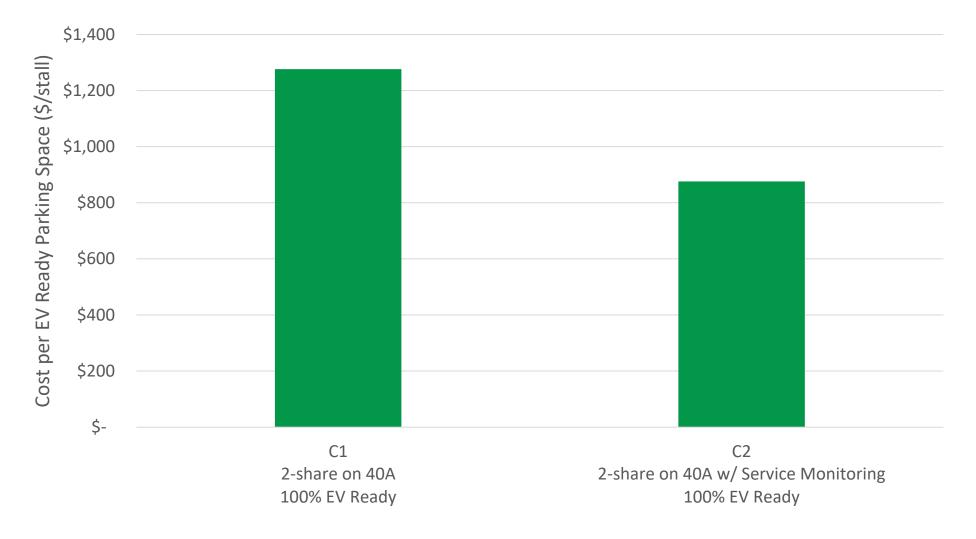
#	Electrical configuration description	% Residential Parking that is EV Ready	Nominal EVSE Power (kW)	EVs per Circuit	Circuit Breaker Rating (A)
C1	2-share on 40A (one EV Ready outlet per household)	100%	6.7	2	40
C2	2-share on 40A with service monitoring	100%	6.7	2	40



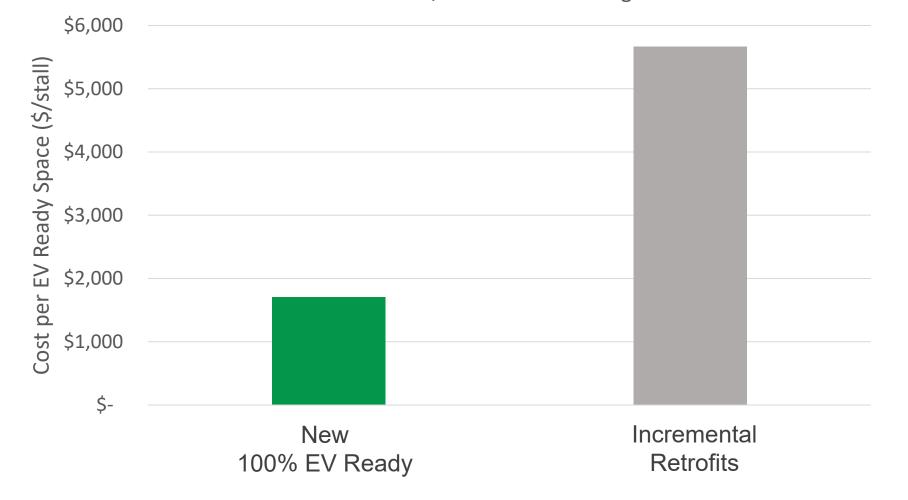
RESULTS






RESULTS TOWNHOUSE

RESULTS SINGLE FAMILY SUBDIVISION



COST OF EV READY NEW CONSTRUCTION VERSUS INCREMENTAL RETROFITS Example – High Rise

DESIGNING

A BETTER TOMORROW

High Rise - C7 4-share on 40A w/ Service Monitoring

THANK YOU!

brendan.mcewen@aesengr.com

OTHER CONSIDERATIONS

CONSTRUCTION COSTS

COSTS OF COPPER 2020-2021

DESIGNING A BETTER TOMORROW

DEVELOPMENTS' CAPITAL CONTRIBUTION FOR UTILITY EXTENSIONS

- Developments' "capital contribution" is difference between the present value of the utility expansion's capital and maintenance costs, and the present value of the projected revenue associated with the development (see *Distribution System Code* Section 3.2 & Appendix B).
- Utilities evaluate revenue forecast (i.e. estimated average kWh and kW charges) for future customers (*Distribution System Code* 3.2.20 & Appendix B).
 - For expansions that require a capital contribution, expansion deposit for the present value of the forecasted revenues (*Distribution System Code* 3.2.20).
 - Utilities annually return the percentage of the expansion deposit in proportion to the actual connections (for residential rate customers) or actual demand (for commercial developments) each year for five years (*Distribution System Code* 3.2.23) [21].
 - Recommended that utilities consider utility policies that accurately reflect how EV charging is likely to emerge over 5 years.
- Cost of increasing utility services differs substantially between different development sites.
 - Service monitoring can avoid service size upgrades.

Smart Circuit Splitters (EV Charging and Appliances)

There are a few types of smart circuit splitters shown in the table below. Smart circuit breakers allow two devices (typically high power) to share a circuit, which can avoid an electrical panel upgrade (For example, like an EV charger and a Dryer). A more sophisticated version of this (DCC and EVduty) will actually monitor the whole home's power consumption then adjust EV charging accordingly. The Neo Charge and the Dryer Buddy both come with built in plugs for attaching to the wall and two appliances, so they are easy to install. Both products also have two options for power sharing – the first, power is supplied to one device or another, and the second, power is supplied to two devices simultaneously. The SimpleSwitch is typically hardwired and just has the first option of powering one device at a time. The Thermolec DCC products and the Evduty will both monitor a whole homes power consumption – however the DCC products will turn EV charging off when the load on the home panel exceeds 80% of its rated capacity, versus the Evduty that will determine the left-over power space on the panel, then supply this to the EV for continuous charging.

	Neo Charge ¹¹⁶ Smart Splitter	BSA Electronics ¹¹⁷ Dryer Buddy	SimpleSwitch ¹¹⁸ 240V Circuit Switch	Splitvolt ¹¹⁹ Splitter Switch	Thermolec ¹²⁰ DCC	Evduty ¹²¹ Smart Current Sensor
Cost (\$)	\$500 (Appliance) \$550 (Dual Car)	\$200 – 365 (several outlet versions)	\$550 (240V) \$650 (EV) \$550 (120V)	\$319	\$1,050 (DCC-9), \$945 (DCC-10)	\$500
Switch On/Off Between Two Devices	Yes	Yes	Yes	Yes	NA	NA
Continuous Power to Two Devices	Yes	Yes	No	No	NA	Yes, shares power between appliance circuit and EV circuit
Monitors Whole House Loads	No	No	No	No	Yes, if total panel exceeds 80% rated load, turns off EV charging. Reconnects automatically	Yes, monitors a unit/home's current draw, left over current will be used to charge EV
NEMA Outlet (NEMA-Amps)	10-30, 14-30, 14-50, (10-50 for portable))	10-30 to 10- 30, 10-30 to 14-50, 14-30 to 14-30)	Hardwired, Optional Plugin	10-30, 14-30, 14-50	Hardwired	Hardwired, or NEMA 6-50, 14-50 outlet
Additional Notes		digital display that shows the draw of each load.	120V version as well	Full color display screen	Multifamily and Single Family, DCC-10 uses one double pole breaker slot	Multifamily and Single Family.

LOAD MONITORING & LOAD SWITCHING CONTROLS

