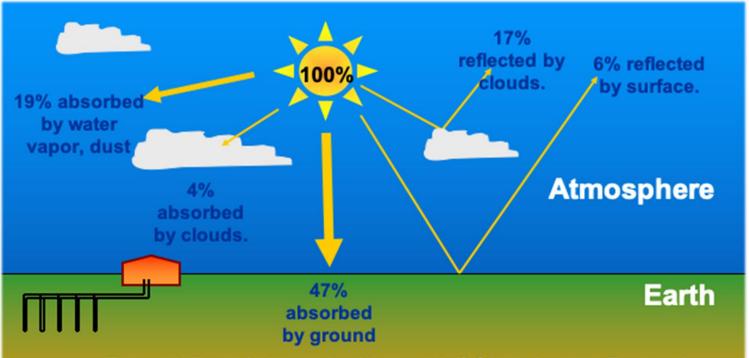
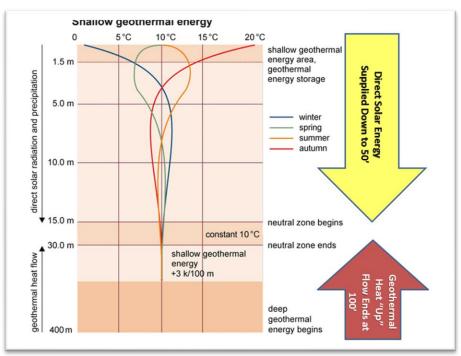

GROUND SOURCE HEAT **PUMP SYSTEMS** (geo-exchange)

PRESENTED BY:

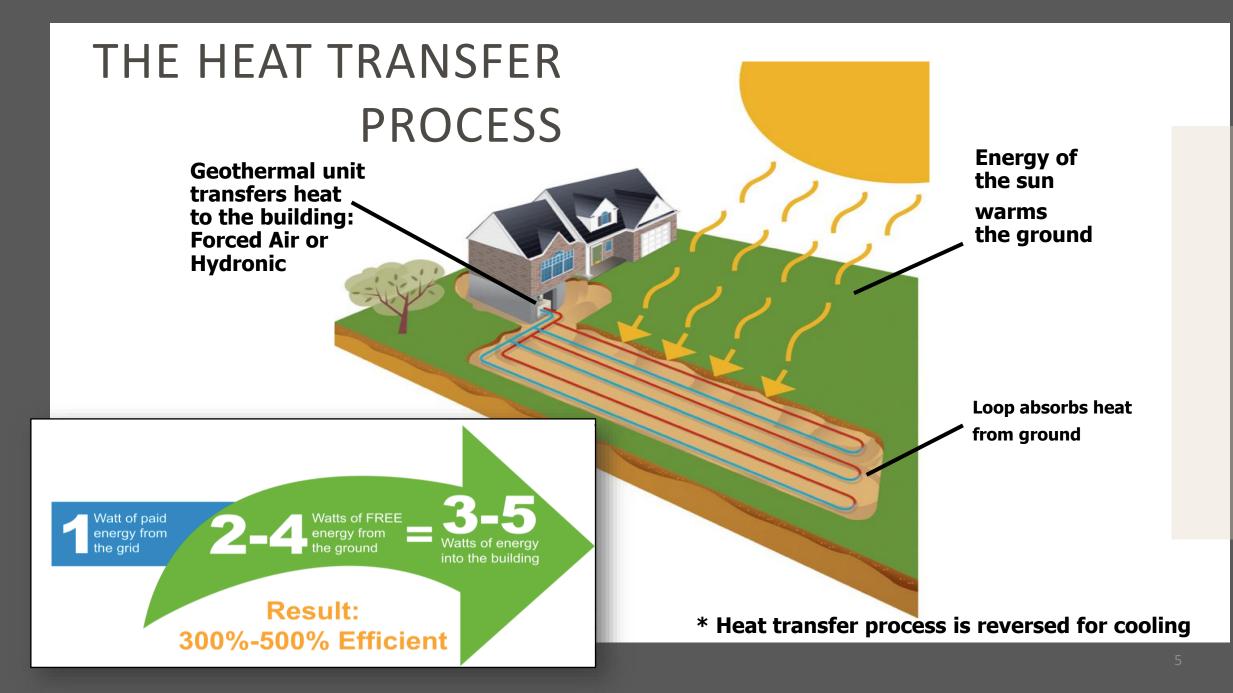
Speaker Bios

Martin Luymes — is Vice-President Government and Stakeholder Relations, for the Heating, Refrigeration and Air Conditioning Institute of Canada (HRAI), where he has worked since 1995. Before starting at HRAI, Martin was Project Coordinator for the Social Investment Organization (SIO), Research Director for the Independent Power Producers Society of Ontario (IPPSO) and a Research Associate and Lecturer at the University of Toronto.

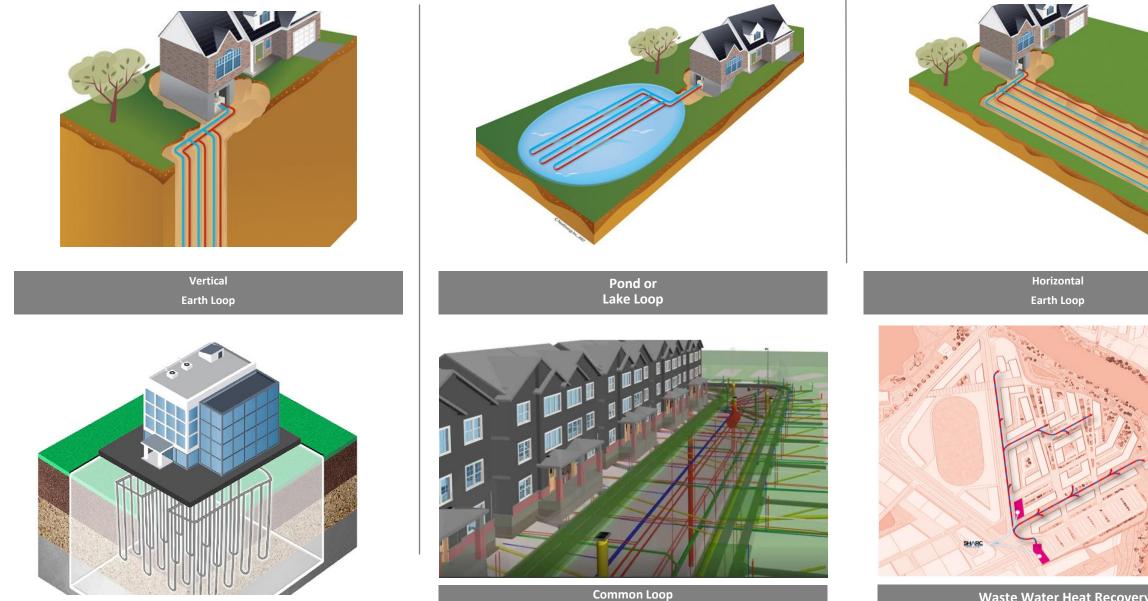

Jeff Hunter — is Vice-President of the Ontario Geothermal Association, an HVAC manufacturer representative with GPA Inc., and an instructor with Conestoga College in the Renewable Energy Techniques program. Jeff is actively involved in the Geothermal industry since 2005. As a Mechanical Technologist, Jeff has extensive experience in Residential and Commercial HVAC systems, specializing in Chilled water systems, Heat Pumps, Hydronics, and high-performance ventilation systems.


AGENDA

Quick Review: How Geothermal Works / System Overview Residential Single Family Multi-Family MUSH What about ASHP / cc-ASHP? Canadian Context - Martin

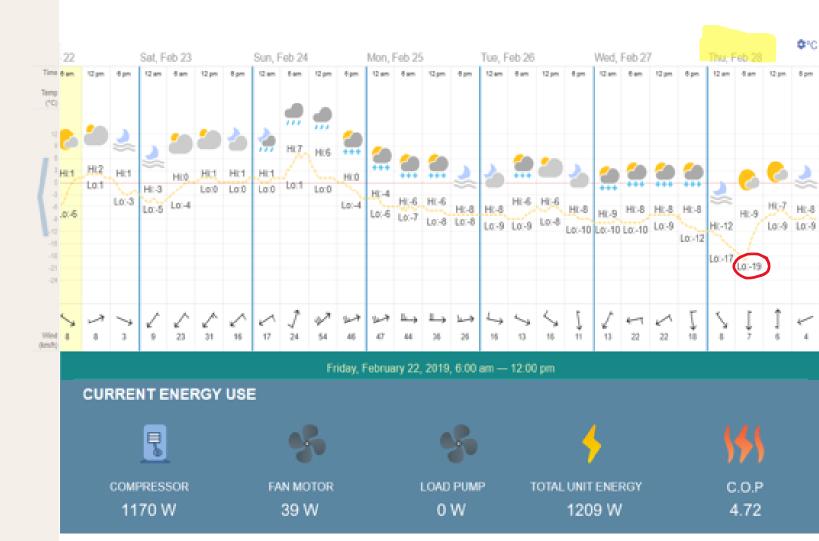


GEOTHERMAL: WHERE DOES IT COME FROM?


GSHP's USE STORED SOLAR ENERGY.

The earth is like a solar battery absorbing nearly half of the sun's energy. The ground stays a relatively constant temperature through the seasons, providing a warm source in winter & a cool sink in summer.

GEOTHERMAL "LOOPS"

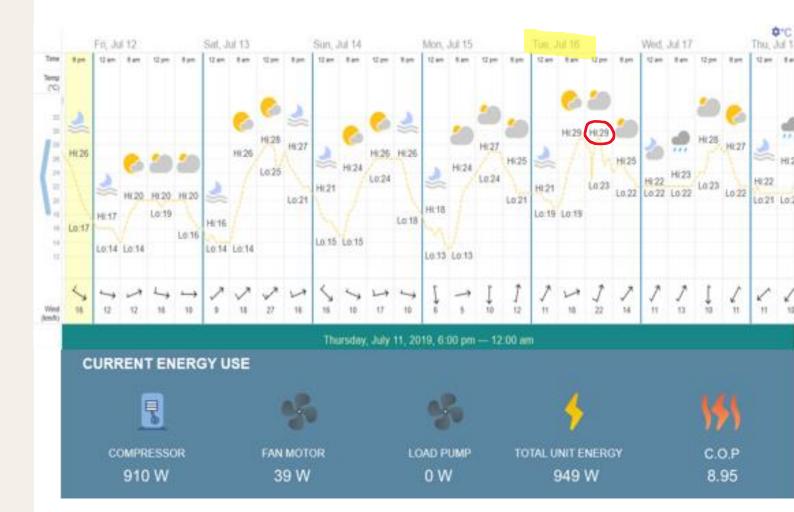

Geo-Micro-District

Single-Family 3 ton Vertical Real-time Data

Data from: Feb.28, 2019

LOOP EWT (C): 3.1 LOOP LWT (C): 0.8 OA TEMP: -19C TOTAL OUTPUT: 19,487 BTU/HR. (5711 W)

NDV038 (TWO-STAGE HEAT PUMP)



Single-Family 3 ton Vertical Real-time Data

Data from July 16, 2019

LOOP EWT (C): 15.8 LOOP LWT (C): 19.1 OA TEMP: +29C TOTAL OUTPUT: 28,975 BTU/HR. (8491 W)

Cooling EER: 30.5

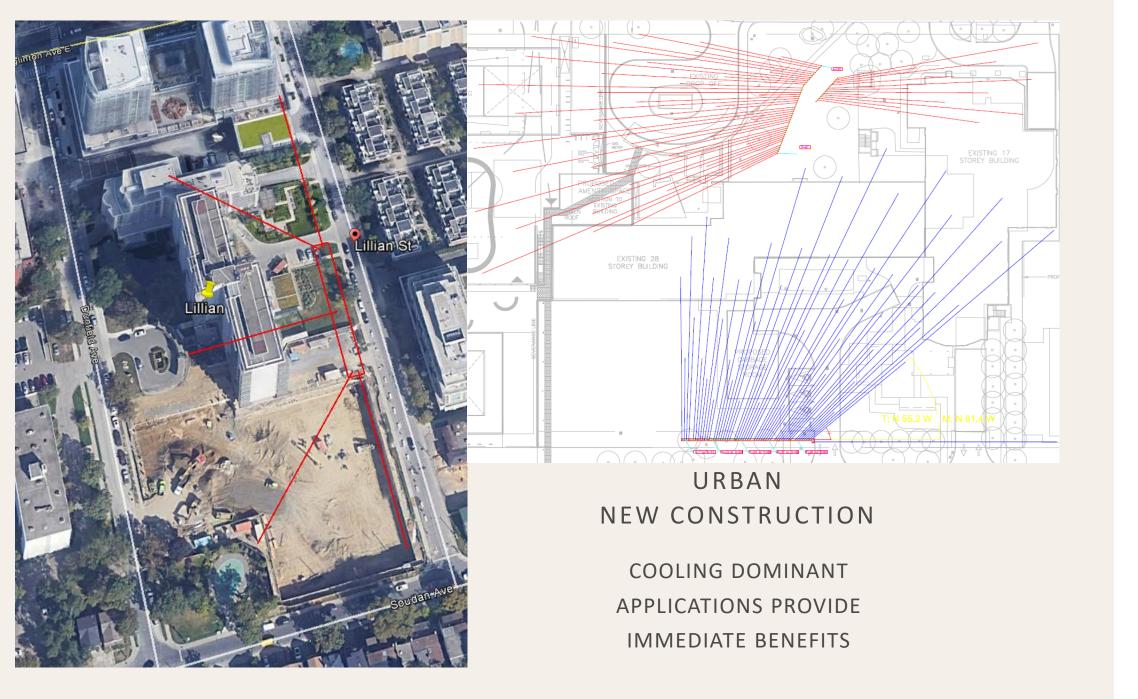
NDV038 (TWO-STAGE HEAT PUMP)

Single-Family: Geothermal Annual Energy Consumption

Heating		Cooling				Water Heating	
Tranquility 30 - Digital		Tranquility 30 - Digital				Geothermal Hot Water Generator	
Electrical Use:	5,363 kWh	Electrical Use:		753 kW	h	Electrical Use:	430 kWh
Average Efficiency:	4.03 COP (W/W)	Average Efficie	nev.	22.98 EE		Average Efficiency:	4.75 COP (W/W)
Annual Contribution:	99 %		ney.	22.90 LL	(Diu/ II)	Annual Contribution:	59 %
Annual Cost:	992 CAD	Annual Cooling Cost:			139 CAD	Annual Cost:	80 CAD
Electric Resistance						Electric Storage Water Heater	
						Electrical Use:	1,605 kWh
Electrical Use:	116 kWh					Average Efficiency:	88 %
Average Efficiency:	100 %					Annual Contribution:	41 %
Annual Contribution:	1 %					Annual Cost:	297 CAD
Annual Cost:	22 CAD	Utility Cost	CAD	Summer	Winter		
		Electric - Geothermal	per kWh	.185	.185	Annual Water Heating Cost:	376 CAI
annual Heating Cost:	1,014 CAD	Electric - Heat Pump	per kWh	.185	.185	Auffult water fleating cost.	570 011
5	,	Electric - Furnace	per kWh	.185	.185	I	
		Natural Gas	per m3	0.45	0.45		
		Propane	per Litre	0.65	0.65		
		FuelOil	per Litre	0.90	0.90		

Single-Family: Conventional Annual Energy Consumption

1						
Heating			Heating		Heating	
Gas Furnace	Fuel Use: Electrical Use: Average Efficiency:	2,339 m3 915 kWh 90 %	Propane Furnace Fuel Use: Electrical Use: Average Efficiency:	3,418 Litres 915 kWh 90 %	Oil Furnace Fuel Use: Electrical Use: Average Efficiency:	2,886 Litres 1,403 kWh 70 %
Annual Heating	g Cost:	1,222 CAD	Annual Heating Cost:	2,391 CAD	Annual Heating Cost:	2,856 CAD
Cooling			Cooling		Cooling	
Air Conditioner	Electrical Use: Average Efficiency:	1,715 kWh 10.09 EER (Btu/W) 317 CAD	Air Conditioner - Split Electrical Use: Average Efficiency: Annual Cooling Cost:	1,715 kWh 10.09 EER (Btu/W) 317 CAD	Air Conditioner - Split Electrical Use: Average Efficiency: Annual Cooling Cost:	1,749 kWh 9.90 EER (Btu/W) 323 CAD
*** . **			_			
Water Heating Gas Storage W Annual Water H	Vater Heater Fuel Use: Average Efficiency:	576 m3 58 % 259 CAD	Water Heating Propane Storage Water Heater Fuel Use: Average Efficiency: Annual Water Heating Cost:	841 Litres 58 % 547 CAD	Water Heating Oil Storage Water Heater Fuel Use: Average Efficiency: Annual Water Heating Cost:	539 Litres 60 % 485 CAD
Continuous Fa	in		Continuous Fan		Continuous Fan	
Annual Continu	Electrical Use: 10us Fan Cost:	0 kWh 0 CAD	Electrical Use: Annual Continuous Fan Cost:	0 kWh 0 CAD	Electrical Use: Annual Continuous Fan Cost:	0 kWh 0 CAD
Total Annual C	Operating Cost:	1,799 CAD	Total Annual Operating Cost:	3,255 CAD	Total Annual Operating Cost:	3,665 CAD
	Natural (Gas	Propar	ne	Oil	10


Commercial / Multi-Residential:

Water Source Heat Pump Loop, ClimateMaster Inc.

Ground Source HP Loop ClimateMaster Inc.

Multi-Residential

14,000 sq m Multi-Family Building - Toronto, ON⁹

· · , · · · · · · · · · · · · · · · · ·	geo fease		
Description	Standard ASHRAE 90.1 Building	Optimized Building with Gas Heating	Optimized Building with GSHP
Base System Cost ¹	\$4,522,000	\$4,522,000	\$4,522,000
GHX System Cost ²			\$835,999
Exhaust Energy Recovery Cost ³		\$301,420	\$301,420
Upgraded Glass Cost ⁴		\$112,980	\$112,980
TOTAL COST	\$4,522,000	\$4,936,400	\$5,772,399

	Operation Costs		
Cooling Cost ⁵	\$54,170	\$41,825	\$29,412
Heating Cost ⁶	\$24,821	\$7,245	\$15,322
Total Heating and Cooling Cost	\$78,991	\$49,069	\$44,734
ANNUAL COST SAVINGS		\$29,922	\$34,257

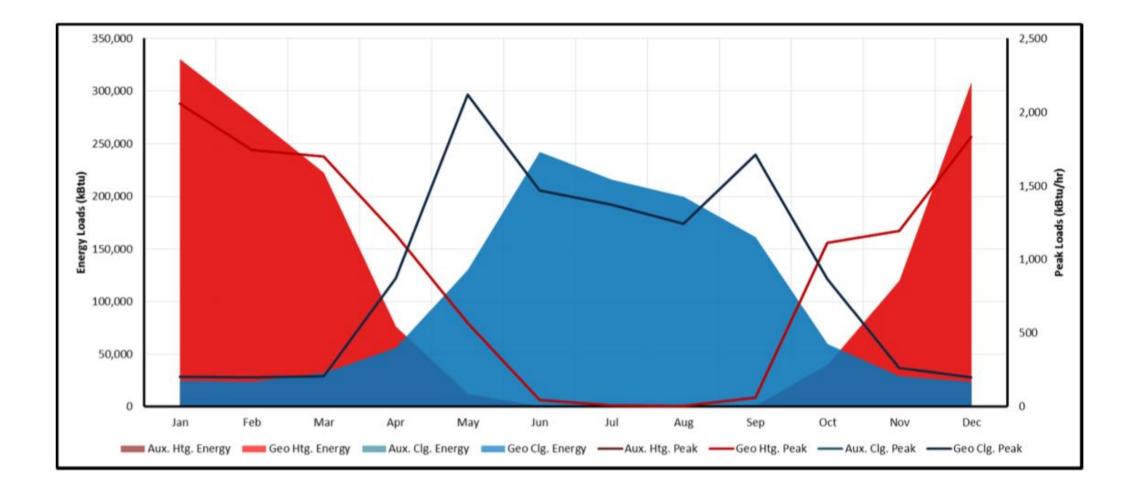
	Summary		
Simple Payback ⁷		13.8 years	36.5 years
Percent CO ₂ Emissions Reduction ⁸		62%	85%
Total Borehole Length			12,740 m

1	\$323/square meter of building
2	\$65.62/meter of bore
3	\$21.53/square meter of building
4	\$8.07/square meter of building
5	\$0.175/kWh electricity cost
6	\$0.450/Therm gas fuel cost
7	Investment Term: 20 years, Discount Rate: 2.5%, Electricity In Action Rate: 2.0%, Fuel In Action Rate: 2.0%
8	0.440 lbs/kWh, taken from https://www.eia.gov (US) or https://www.cer-rec.gc.ca/ (Canada)
9	The estimated building load calculations are based on weather data taken from Toronto, ON, Canada.

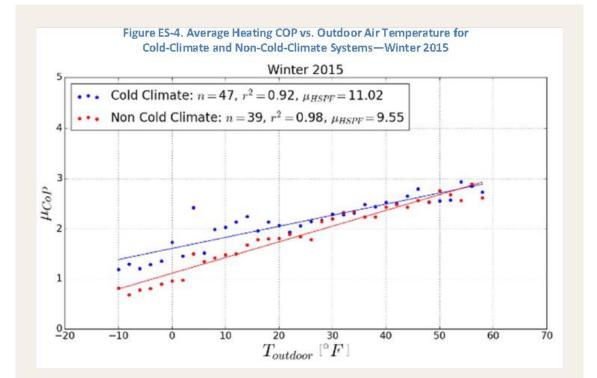
						~ ·					Project Name:	Dakville Co	
				Project Finan	cial	Overview					Condo Size (sq. ft.):		160,000
Project Ber	nefits Su	ımmary									Financial Details		
Total Estim	ated Co	nstruction	Savir	ngs					\$	300,000	Annual Energy (Electricity & Gas) Avoided Cost	\$	68,000
Expected Sa	avings fo	or Condo C	orpo	ration over 30	years	5			\$	1,804,467	Annual Water Avoided Cost	\$	7,00
Condo Savi	ings per	sqft (Net	Dive	rso Energy Ch	arge))					Annual Capital Reserve Avoided Cost	\$	25,00
	<u>)</u>	/ear 1		<u>Year 5</u>		Year 10		Year 20		Year 30	Annual Maintenance & Repairs Avoided Cost	\$	23,000
Annual	\$	0.08	\$	0.13	\$	0.21	\$	0.45	\$	0.86	Annual Chemicals Avoided Cost	\$	9,00
Monthly	\$	0.01	\$	0.01	\$	0.02	\$	0.04	\$	0.07	Annual Carbon Tax (\$50/Ton - 2022)	\$	9,50
Sustainabil	ity Impa	act (Key M	etri	cs)							Total Expected Avoided Costs	\$	141,50
Annual HVA	C Energ	y Saved						50	%		Geothermal Energy Charge	\$	128,00
Annual Emi	ssions R	eductions						190	tor	ns CO ²	Year 1 Net Savings to Condo Corporation	\$	13,50
Annual Wat	ter Save	d						2,200,000	litr	res			
											Charges will be inflated based on below annual indexation	1	
Constructio	on Savin	igs for Dev	elop	per							Expected Energy (Electricity & Gas) Inflation Rate		4.0
Diverso Ene	ergy Geo	thermal Co	ost to	o Developer					\$	-	Expected Water Inflation Rate		5.0
Estimated S	avings f	rom Displa	iced	Equipment (Co	oling	g tower, heati	ing	boilers, etc.)	\$	300,000	Expected Capital Reserve Inflation Rate		3.0
Estimated (Constru	ction Savi	ngs	equipment av	oide	d)			\$	300,000	Expected Maintanance & Repairs Cost Inflation Rate		4.0
Developer's	6 Contrib	oution to B	orefi	eld Cost					\$	-	Expected Chemicals Inflation Rate		4.0
Total Estim	ated No	t Construi		e Souings					ć	300,000	Expected Carbon Tax Inflation Rate		5.0
Total Estim	ated Ne	et constru	cuol	n Savings					Ş	300,000	Diverso Energy Inflation Adjustment		3.0

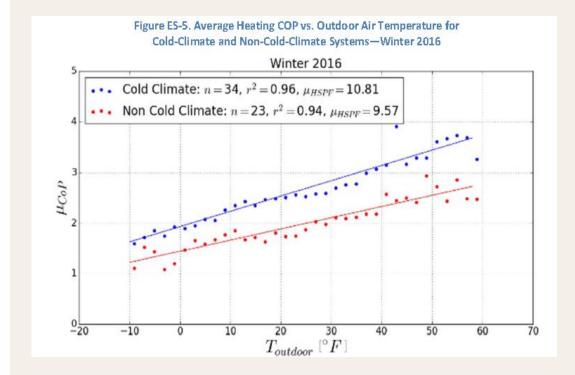
				Water &	Ma	intenance &						Ge		
Year	Energy & Gas			hemicals		pital Reserve		Carbon Tax		nnual Net				
reur	Avo	oided Costs		pided Costs		•		Avoided Costs		ided Costs		Savings	\$0.08 -	
1	\$	68,000	\$	16,000	\$	48,000	\$	9,500	\$	13,500				
5	\$	79,550	\$	19,037	\$	55,044	\$	11,547	\$	21,114	\$0.07 -			
10	\$	96,785	\$	23,669	\$	65,356	\$	14,738	\$	33,536				
20	\$	143,266	\$	36,650	\$	92,295	\$	24,006	\$	71,768	\$0.06 -			
30	\$	212,068	\$	56,881	\$	130,643	\$	39,103	\$	137,055				
TOTAL	\$	3,813,776	\$	969,836	\$	2,479,339	\$	504,764	\$	1,804,467	\$0.05 -			
52,000,000		30 Year	Cun	nulative Op	erat	ional Saving	gs (C	Condo Cor	p)		\$0.04 -			
											\$0.03 -			
1,500,000														
1,000,000								пH			\$0.02 -			
\$1,500,000 \$1,000,000 \$500,000 \$0						пШ					\$0.02 - \$0.01 -			

Geothermal Energy Charge vs Operational Savings (per sq.ft.)						
7.3¢/month						
Carbon Tax 6.6¢/moi	nth					
Chemicals						
Maintenance & Repairs						
Capital Reserve Geothern al Energ						
Water Charge	'					
Energy						



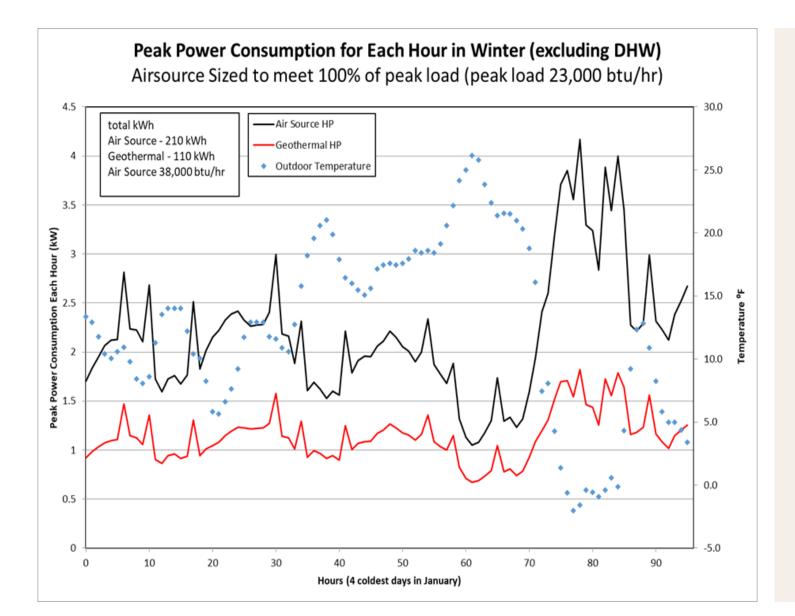
Multi-Residential




MUSH:

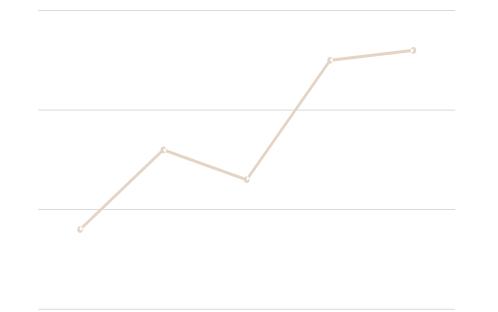
John Paul II Secondary – London, ON.

Air Source Performance Data



ccASHP + ASHP 2015

ccASHP + ASHP 2016


When demand is high, conservation is the most critical.

Canadian Context

Martin Luymes

SIZE OF MARKET

CANADA

- Few reliable statistics exist and HRAI does not track shipments.
- National Energy Use Database (NEUD) says Heat Pumps were 5.1% of homes ("residential space heating") in 2017 (no breakdown by type).

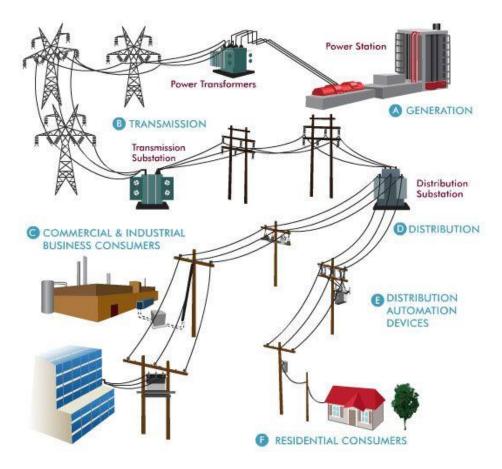
(NEUD Residential Sector Canada, Table 27: Heating System Stock by Building Type and Heating System Type).

- i.e. under 800,000 homes out of 15.5 million homes.
- ...but probably up since then (esp. on the coasts).
- Industry estimates suggest approximately 5,000 GSHPs sold in residential applications last year (60% of these in new construction).

- MUSH sector with both new and retrofit of universities, colleges, schools, community centres.
 Starting to see federal projects, district systems.
- Multi-residential growing rapidly. (Ontario / Lower BC)
- Beginnings of new community scale applications currently being tendered (Markham – 300 homes). More on horizon.

Major push by several municipalities/cities to go low carbon, including: City of Toronto, Oakville, Peel Region, Halton Region, Kingston, Ottawa and Markham. Changes are happening quickly with whole developments either adopting or considering adopting district with geo and single geo installs for homes.

GSHP IN CANADA: REASON FOR OPTIMISM


The Economic Value of Ground Source Heat Pumps for Building Sector Decarbonization Review of a recent analysis estimating the costs of electrification in Canada

Introduction

Electrification of fossil-fuel consuming technologies is commonly recognized as one of the key tools to achieving Canada's GHG emission reduction targets.

Total cost of electrification in Canada could be exorbitant, as utilities and consumers are required to invest in infrastructure for power generation, transmission, distribution, building intake, and consumption.

GSHPs can play an important role in reducing the total costs of electrification, alongside other lowcarbon technologies, by minimizing peak demand.

Review of a recent study¹ modeling the costs of electrifying Canadian buildings, industries and vehicles under different scenarios

Approach

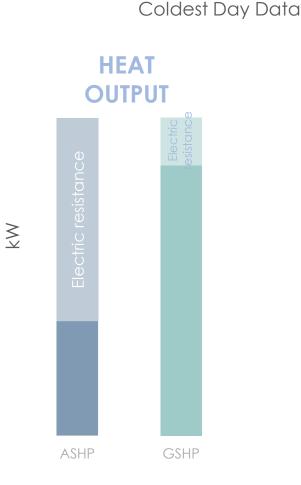
Detailed modelling of ASHP and GSHP costs and performance for different building archetypes and climates

Assessment of the **relative impact of GSHPs** on cost components for each electrification scenario in the original study

Original study assumes all buildings are converted to ASHPs; GSHPs were excluded.

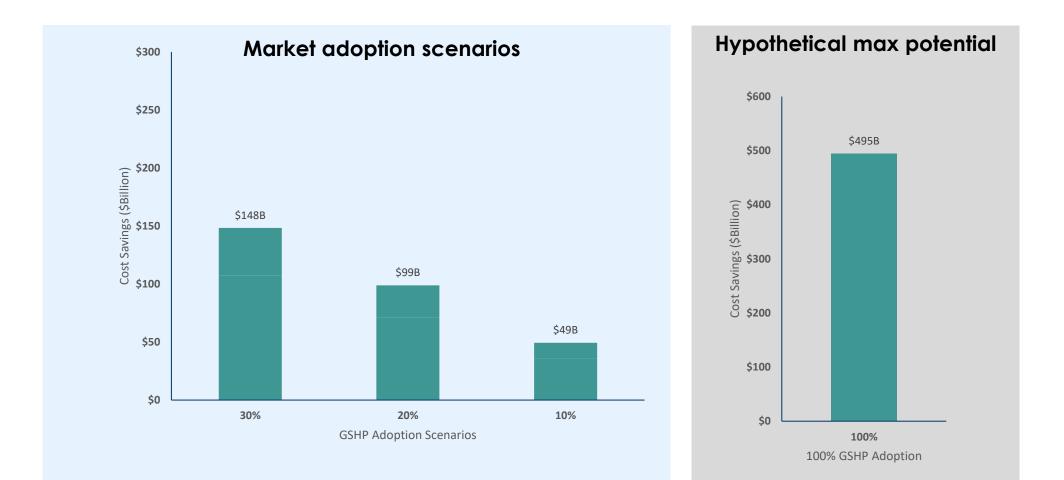
- Equipment + fuel costs
- Utility costs

¹ Canadian Gas Association, Implications of Policy-Driven Electrification in Canada (October 2019). For purposes of this assessment, Dunsky assumed that all of the original study's inputs and assumptions are accurate. Any errors or omissions in the original study could impact the results presented herein.


Different technologies yield different grid impacts

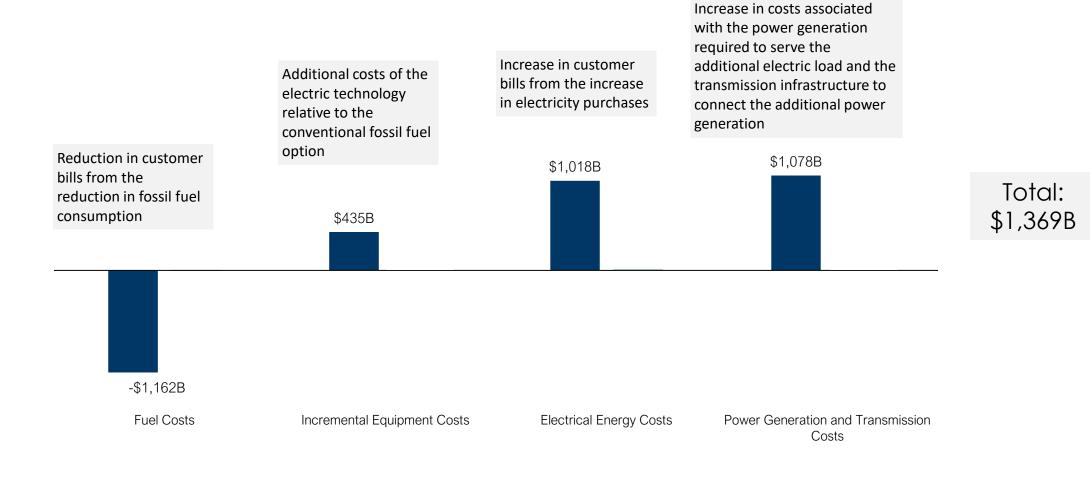
Original study: all buildings are assumed to use ASHPs with electric resistance back-up

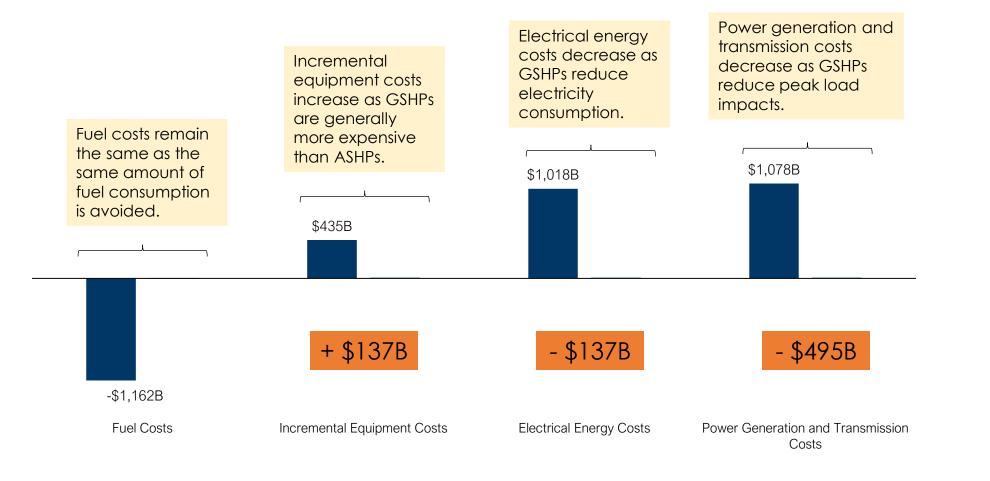
 As temperatures drop, the capacity and performance of the ASHPs degrade, and the electric resistance has to provide more of the heating capacity


Our analysis: impact of using GSHPs with electric resistance back-up

• GSHPs keep performing even during winter peaks; reducing how much energy is required from the electric resistance

Results


Under a scenario in which Canada moves to 100% carbon-free electricity generation by 2050, **aggressive promotion of GSHPs could save Canadians between \$49 and \$148 billion** relative to the original study's findings.


Costs components variation under a 100% ASHP adoption scenario

(compared to a BAU scenario)

Results

Variation under a hypothetical 100% GSHP adoption scenario

Conclusion

GSHPs can significantly reduce the costs of widespread electrification in Canada

- Lower power generation and transmission costs
- Lower electricity costs for consumers
- Increased investment in buildings is more than offset by cost reductions

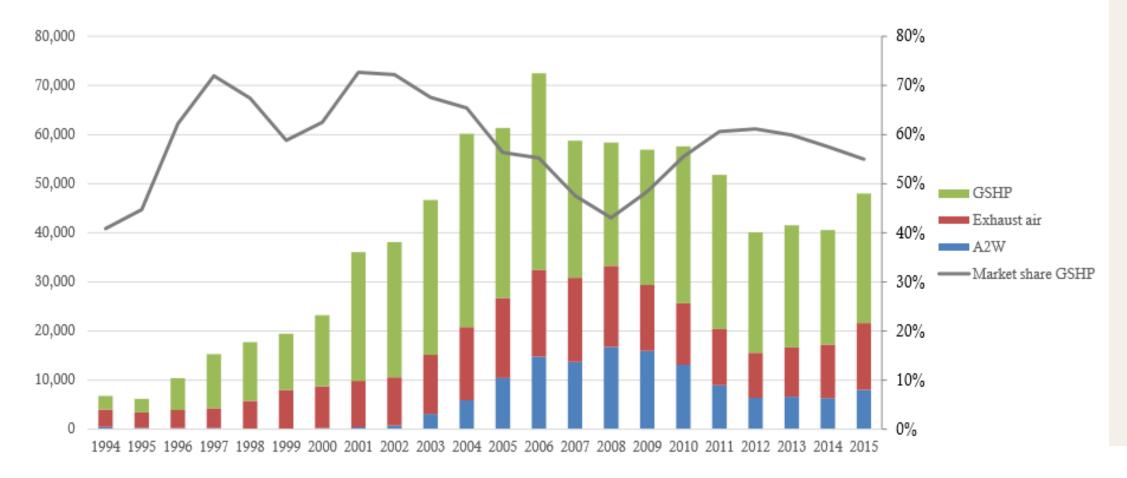
Benefits of GSHPs are highest in colder climates

- ASHPs must rely more heavily on electric resistance back-up
- In milder climates (e.g. Vancouver), GSHPs generate total costs reductions in larger buildings using hydronic heating systems, but not in smaller buildings using furnaces or rooftop units

GSHPs have an important role to play to decarbonize buildings in Canada

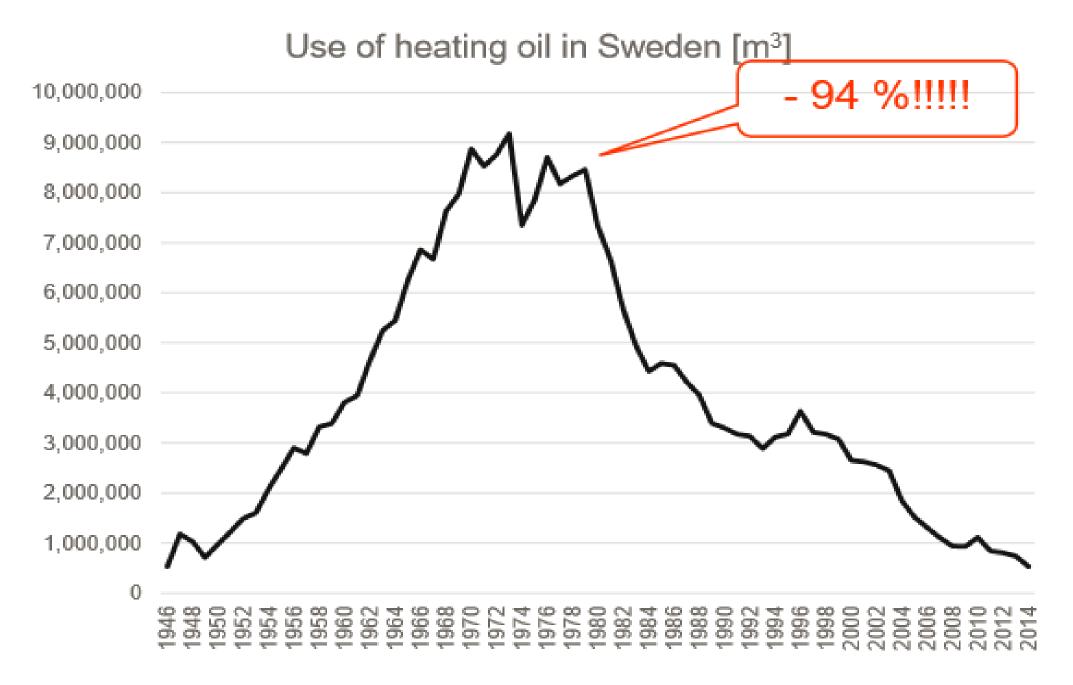
- GSHPs should be included in electrification policies, especially as we move towards renewables-based power generation
- However, numerous solutions will be required, in the near-term, to decarbonize Canada's building sector, including ASHPs, GSHPs, and renewable gas.

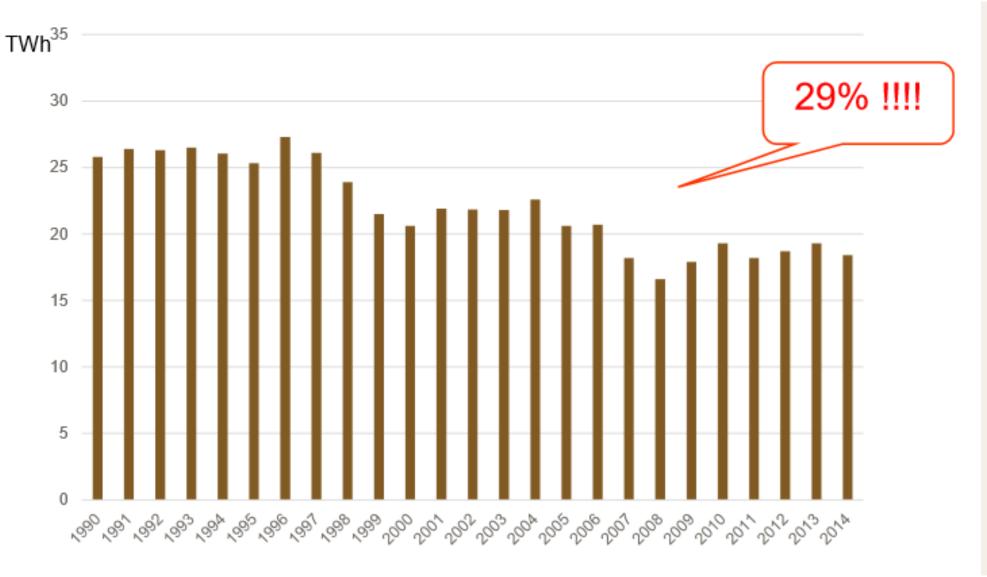
Next steps


Phase 2 Study

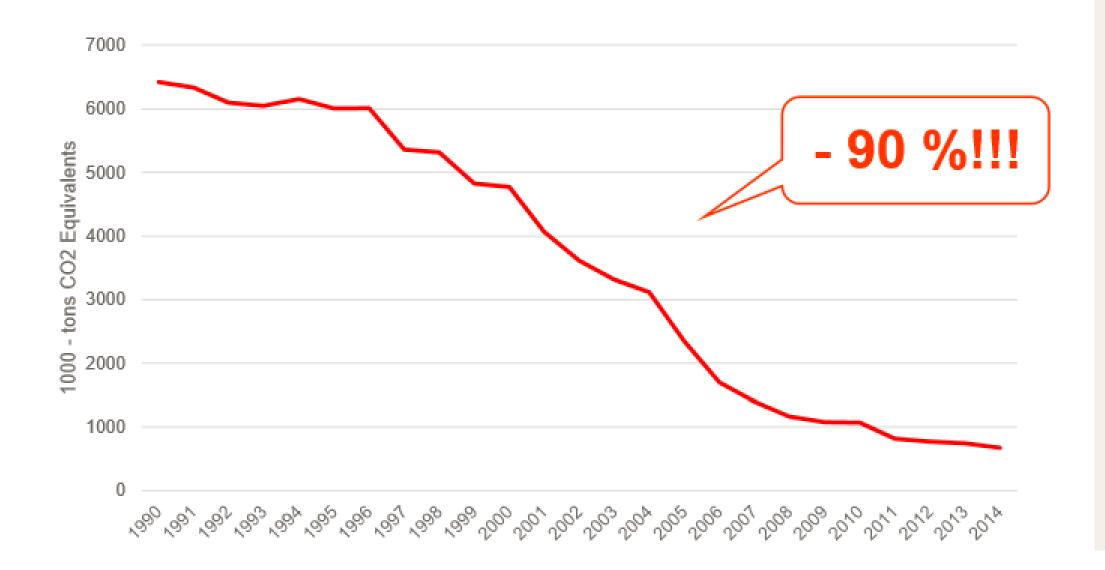
- Recommendations on actionable policies and regulations to increase the use of GSHPs in Canada
- Learn from the best around the world
- Adapt what we learn to the Canadian context

The Sweden Example...


Swedish heat pump market development 1994-2015



The Sweden Example...


Vertical Geothermal Loops in Sundbyberg, a Residential Neighbourhood of Stockholm, Sweden

Use of electricity for heating purposes in Sweden

GHG-Emissions related to heating in buildings

Thank You

