

CRE Climate Adaptation & Resilience

- 1. BOMA Canada's efforts
 - Resilience Brief
 - Flood Adaptation
- 2. BOMA Toronto's efforts
 - Carrying Capacity Study
 - Technical Guidance Notes

BOMA Canada's National Effort

BOMA Canada Resilience Brief

http://bomacanada.ca/resources/resilience-brief/

BOMA Canada Resilience Brief

Table of Contents

Resilience Brief	1
Acknowledgment	3
A Call to Action	5
What is Resilience?	6
Adaptation Strategies	11
Advancing Resilience in Canadian CRE: BOMA's Next Step	14
Advancing Resilience in Your Building: Your Next Steps	15
References	16

BOMA Canada – Ahead of the Storm

https://www.intactcentreclimateadaptation.ca /wp-content/uploads/2019/10/Ahead-of-the-Storm-1.pdf

Why focus on flood mitigation?

- ✓ Escalating cost of natural disasters in Canada
- ✓ Impacts on CRE tenants
- ✓ Impacts on CRE insurance and availability
- ✓ Legal liability
- ✓ Impacts on credit rating
- ✓ Investor's attention to climate risk adaptation & resilience
- ✓ Help meet Canada's commitment to respond to climate change and reduce flood risk

BOMA Canada – Ahead of the Storm

Table 1: Key Flood-Resilience Measures for Commercial Real Estate (Office Towers), Canada

Plans and Procedures	Equipment & Supplies	Major Retrofits'
PP1. Emergency plans: emergency preparedness and response plans are in place and include flood event procedures.	ES1. Critical equipment and supplies: critical equipment and supplies are available onsite to respond to flood emergencies, (e.g., sandbags, sump pumps, portable generators,	MR1. Elevating and flood-proofing critical equipment: heating, cooling, ventilation, and air conditioning (HVAC) equipment; electrical transformers,
PP2. Practice drills: building operations staff are trained on flood event procedures. Annually, practice drills are performed with	fuel, portable lights, extension cords, dehumidifiers, protective clothing, etc.).	switchgear and service panels, as well as communication systems are elevated above expected flood levels. If not feasible to
tenants and procedures are updated as required. PP3. Emergency funds: dedicated funds are	ES2. Portable flood barriers and sandbags: for buildings with critical operations (e.g., buildings housing data	elevate, these systems are flood-proofed (e.g., with equipment elevated off the ground and drains at the lowest points on the floor).
available for emergency operations, including flood events. Designated staff have access to both credit cards and sufficient amounts of cash to be used for emergency operations.	centers), portable flood barriers and sandbags are available to protect the building from overland flooding.	MR2. Protecting server rooms: server rooms are located on higher floors, preferably on a raised platform, with a sump
PP4. Tenant communication channels:	ES3. Back-up generation: onsite back-up generation equipment and fuel are available	pump installed at the lowest point. Water sensors are installed for leak detection.
tenant and stakeholder communication channels have been established for emergency situations, including flood events.	and have the capacity to provide electrical power to at least one elevator, all building sump pumps, heat pumps, boiler, smoke	MR3. Protecting high-voltage and telecommunication pull rooms:

Why focus on flood mitigation?

Table 2: Scope of Flood-Resilience Approaches for Existing Commercial Real Estate Properties in Canada

In Scope	Out of Scope
Property-Level Measures:	Climate risk assessments
Emergency response procedures	Broader resilience plans
Flood preparedness activities	
Physical building improvements	
Geography:	Geography:
All of Canada	Permafrost communities
Flood Hazards:	Flood Hazards:
Riverine	Water damage due to burst pipes, sink overflows,
Overland	fire system failures
Sanitary sewer back up	Storm surge and sea level rise
Storm sewer back up	Tidal flooding, dam failures and other unique flood
	hazards
Property Types:	Property Types:
 Commercial (primary focus is on office towers) 	• Industrial, institutional and multi-unit residential
	buildings (MURB)*

BOMA Canada – Ahead of the Storm

CHAPTER 2 - Floor Resilience Measures for Existing CRE Properties in Canada

BEFORE THE FLOOD

- ✓ Plans & Procedures
- Equipment & Supplies
- ✓ Major Retrofits

DURING THE FLOOD

- Procedures
- Communication
- Action items

AFTER THE FLOOD

- Procedures
- Action items

BOMA Toronto's Approach to CRE Resilience

Under Resilient TO

General Approach

BUILDING RESILIENCE ASSESSMENT

Planning Process

BOMA
Toronto
Inspired leadership since 1917

PHASE I

Create a Business Case for CRE Resilience. Develop a risk-based evaluation model that considers influence of critical infrastructure on the building's capacity to operate, and the building's capacity to recover should the utility from one or more of critical infrastructure in the building is interrupted. [A mathematical model with a quantifiable and verifiable input and output]

Rationale: Building owners and managers need a methodology to calculate their risk exposure and determine their ability to recover from extreme events as part of their business impact assessment. The outcome would lead to a resilience strategy that aims to minimize risk exposure and maximize their ability to recover and achieve normal operational/performance level (or better) at the shortest possible time.

PHASE II

Develop a Building Infrastructure Resilience Planning Guide for Commercial Real Estate. The planning guide will include a set of best practices and procedures that could directly impact the outcome of PHASE I.

Rationale: Once the <u>risk</u> exposure and the <u>capacity</u> to recover are determined, building owners and managers may need directions on how to manage and change input variables so that they could aim for the desired output that meets their business requirement.

The extent to which the input variables are changed (or expected to change) will form the basis of their resilience strategy and planning.

Progress Update – PHASE I

- In early 2016 BOMA Toronto (in collaboration with UofT Centre for Resilience of Critical Infrastructure & FCR) commissioned a study to investigate <u>Carrying Capacity</u> of buildings and the infrastructure that supports operation of buildings.
- 12 buildings participated.
- **Part 1**: Focused on determining what are the variables and how it should be usefully measured + derived a methodology. Findings were presented internationally
- Part 2: Investigated how to apply the methodology to real-life scenario. Finding was published
- Part 3: Application & Validation Applied to international sites & portfolios with desirable outcome

Progress Update – PHASE I

- International application sites:
 - Gaza strip (Israel Ministry of Infrastructure)
 - International Red Cross facilities
 - St. Lucia airport
 - Middle-East
- Contribution to a special report on "Smart City Connectivity to Support Municipal and Community Resilience." through the International Telecommunications Union (ITU). A report commissioned under "United for Smart Sustainable Cities" a UN initiative

Technical Guidance Notes

https://cdn.ymaws.com/www.bomatoronto.or g/resource/resmgr/2019/Resilience Guide Bo ok Final.pdf

A BOMA Toronto Technical Guidance Note

CONTENTS

Forward from Susan M. Allen	1
Preface	3
Introduction	5
Drivers of Resilient Development	
Driver 1: Site Selection	9
Driver 2: Planning Envelope	13
Driver 3: Incident Sequencing	17
Driver 4: Security Requirements	21
Driver 5: Integrated Design	25
Looking to the Future: Trends that Should Be on Your Radar	28

5 Key Drivers

How to Use the Five Drivers of Resilient Development

Each of the drivers is structured in the following way, using only what is reasonably foreseeable:

- 1. An objective statement
- 2. An explanation of the driver's supporting principles and concepts
- 3. Guidance for executing it

DRIVER 1:SITE SELECTION

Objective

Incorporate location-based hazards and reasonably foreseeable consequences into the site selection process and investment decision criteria.

DRIVER 2: PLANNING ENVELOPE

Objective

Understand the capabilities of the facility and its servicing infrastructure and compare it with the needs of tenant operations. This will assist in determining the most suitable use for each space, and in prioritizing any investments that may be required.

DRIVER 3: INCIDENT SEQUENCING

Objective

Understand what tenants need to achieve to stay in business, and work backwards to assess the level of facility performance required to enable it.

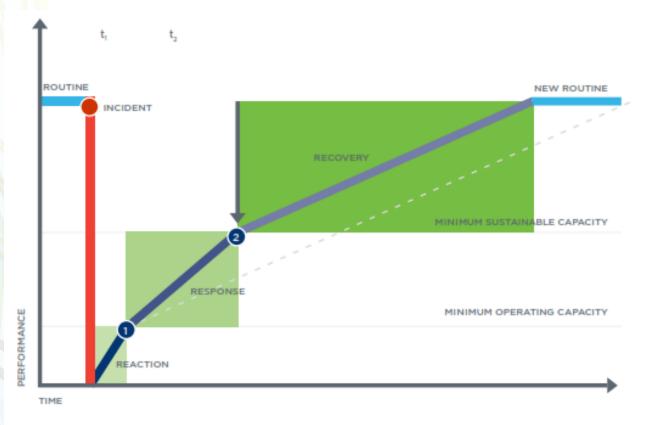


Figure 1: The Incident Sequence

The key here is to interrupt a cascading failure and buy the time required to implement active recovery measures.

DRIVER 4: SECURITY REQUIREMENTS

Objective

Understand where residual risk remains and design your security requirements to fill these gaps. Security functions themselves also need to be protected. An all-hazards awareness must be maintained as these security functions are developed to ensure that measures to address one risk do not exacerbate the vulnerability to or impact from another.

DRIVER 5: INTEGRATED DESIGN

Objective

Understand the value in having all functional and operational interests represented early and throughout the facility lifecycle. Requirements and assumptions must be documented, and key performance requirements verified by testing critical processes and systems against the failure scenarios (defined by the incident sequences) to assure that each scenario unfolds as expected.

In Practice....

