

Assessing Green Infrastructure Opportunities for Climate Change Resiliency in the Region of Peel

Green Infrastructure Workshop September 27, 2019

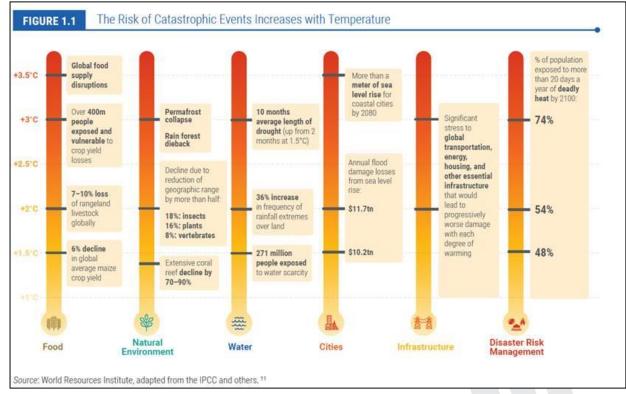
Mark Pajot, Advisor
Office of Climate Change
& Energy Management (OCCEM)

Yuestas David
Project Manager, Research and
Knowledge Management
Toronto and Region Conservation
Authority

Urgent Action Needed

2019 Reasons to be Concerned

Unprecedented fires burning in the Russian Arctic



17% of the population left homeless in Bahama's following Hurricane Dorian

What makes this an emergency*?

- 100 million more people could be driven into poverty by 2030.
- 1.4 billion more people each year will be short of water, causing unprecedented competition for water, fueling conflict and migration.
- Rising sea levels and storms will drive hundreds of millions from their homes, with costs of \$1tn (£810bn) a year by 2050.

*ADAPT NOW: A GLOBAL CALL FOR LEADERSHIP ON CLIMATE RESILIENCE https://gca.org/global-commission-on-adaptation/report

Towards A Climate Resilient Region

Sources:

- 1. UN ISDR Sendai Framework for Disaster Risk Reduction (2015) https://www.unisdr.org/we/coordinate/sendai-framework
- 2. Climate Change Adaptation Indicators Framework for the City of Boston (2015)
- 3. Municipalities and Climate Change: A Framework for Analyzing Local Adaptation Policy. (2014) Paper prepared for the Annual Meeting of the Canadian Political Science Association Session E1 Beyond Borders: Local Climate Change Policy and Inter-Local Cooperation Brock University, St. Catharines, Ontario.

Commitment, Capacity and Partnerships established

Commitment and Capacity Increasing

Statement of Climate Change Commitment

- Climate Change Master Plan
- Support Community Partnership Planning
- Form Office of Climate Change and Energy Management

Strategic Priority: Build Environmental Resiliency

Commitment, Capacity and Partnerships established

Community Climate Change Partnership Supported

ndate

Strategies

Outcomes

Success Metric

Working together to adapt to and mitigate the effects of climate change as we transition to low carbon and resilient communities within Peel Region

1) Low Carbon Community

Develop and implement actions that result in reducing community greenhouse gas (GHG) emissions in priority areas

> Net reduction in community GHG emissions

Number and use of electric vehicle charging stations across the Region

Reduction in energy use in priority areas 2) Flood Resiliency

Strengthen the integrated approach to water management for collective action in reducing flood risk in priority areas

Reduce flood risk by increasing flood resiliency in priority areas

Reduced flood risk as a result of utilized adaptation measures and priority planning; i.e. SNAP, Modelling Tools

Number of inter-agency policies, plans, programs and projects that integrate flood resiliency into practice 3) Green Natural Infrastructure

Increase the number of healthy trees in priority areas to reduce public health risk and enhance social and environmental outcomes

Increase canopy cover in priority areas to provide multiple co-benefits

Number of healthy trees on public land in priority areas

Surface temperature in priority areas

4) Public Education

Deepen knowledge and understanding of climate change corporately and in the community, contributing to longterm behaviour changes that build resilient regional communities and neighbourhoods

Increase knowledge and awareness of climate change that results in behaviour change to build resilient communities in support of the Peel Climate Change Partnership Plan

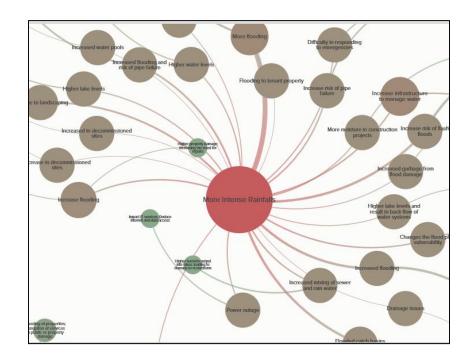
Increase the number of coordinated activities with partners

Number of people reached with climate change messaging from the Community Climate Change Plan

Peel's Projected Climate in 2050

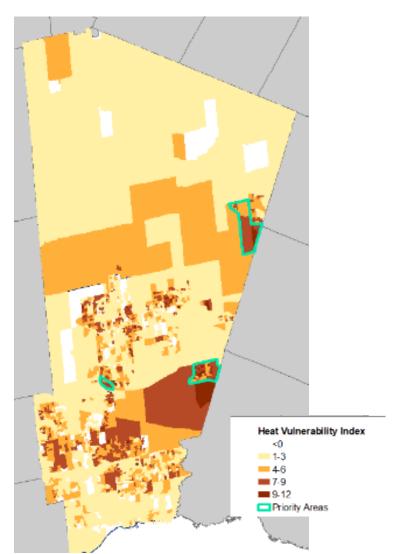
Climate Indicator	Where are we now?	Where are we headed?	Trending
Mean Annual Temperature (°C)	7.4	9.4	1
Winter	-4.8	-2.6	1
➤ Spring	6.1	7.8	1
> Summer	19.3	21.3	lack
> Autumn	9.1	11	lack
Number of Days Tmax≥30°C	12	26	个
Number of Days Tmax≥35°C	0	2	1
Number of Days Tmin≤-10°C	44	23	V
Number of Days Tmin≤-15°C	19	8	\downarrow
Total Precipitation (mm/yr) *	852	926	\uparrow
Winter (mm/mo)	61	71	lack
Spring (mm/mo)	68	78	1
> Summer (mm/mo)	77	78	\leftrightarrow
> Autumn (mm/mo)	77	82	lack
1-Day Max Precipitation (mm) *	37	40	个
5-Day Max Precipitation (mm)*	59	65	1
Simple Daily Intensity Index (mm/day) st	6.5	7.0	1
Growing Season Length (days)	169	203	个

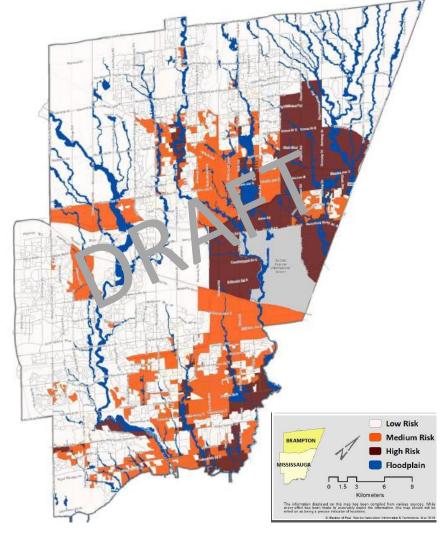
^{*} Historic Data for Precipitation: EC monthly homogenized & CANGRD Daily. Future projections: Raw data extracted from variables in the CLIMDEX experiment led by Environment Canada: www.cccma.ec.gc.ca/data/climdex/climdex



Vulnerabilities and Risks Assessed

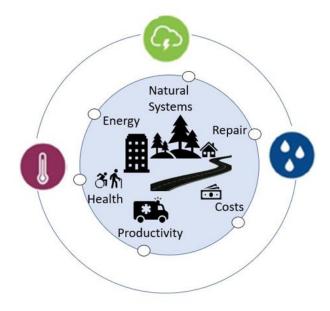
Climate Trends and Vulnerability Assessments (2014-2016)


Corporate Risks (2017)



Heat and Flood and Vulnerable Areas Identified

Heat vulnerable areas



Flood vulnerable areas

High Risks Impacting Services

Increased health impacts and reduced staff productivity

Rising financial costs and liabilities

Increased pressure on operations and maintenance

Increased energy use and vulnerability of the electricity supply

Reduced state of good repair

Increased impacts to natural systems

Investments Increasing

Enterprise Programs and Services

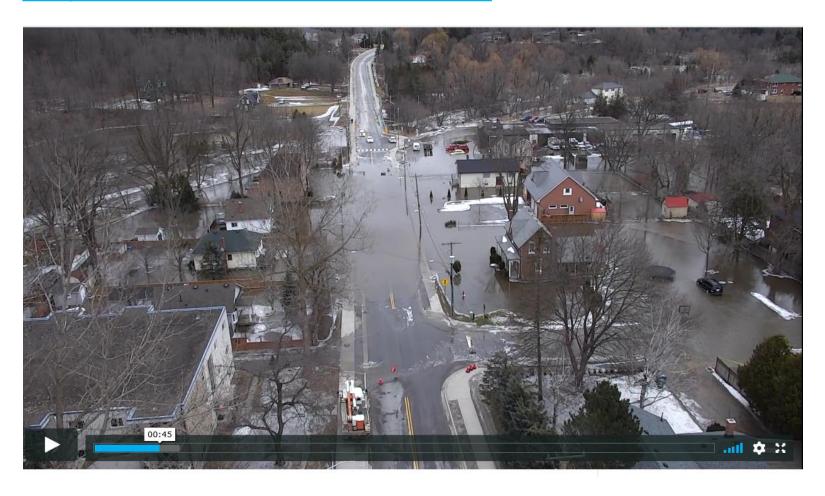
Climate change mitigation and energy management – 2.2 million

Water and Wastewater

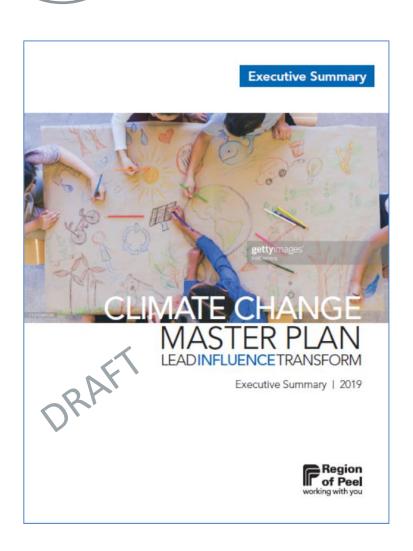
Reduce incidents of sewer back-ups during severe weather events caused by surcharge of the sanitary system.

Roads and Transportation

Adapting to and to mitigating the effects of climate change by implementing low-impact development measures into our road designs so more water can be absorbed during severe weather events


2019-2028 Capital Plan Forecast

Government is future-oriented and accountable: \$39 million for climate change studies and investments as well as technology initiatives to provide modern service to citizens


Preparing for greater weather related emergencies

https://vimeo.com/324691127

Plan in place to address risks and opportunities

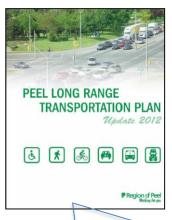
What we PLAN to do about it

Chapter 4: Be Prepared

A safe, secure, and connected community is provided by ensuring Regional services and assets are more resilient to extreme weather events and future climate conditions.

PROTECT AND INCREASE GREEN INFRASTRUCTURE THROUGHOUT PEEL

Land use policy adopted and plans in place to increase community resiliency


Supportive Policies, Plans and Standards

Official Plan Policy (2041)

"Support comprehensive stormwater management planning, including low impact development and green infrastructure."

Transportation Planning and Stormwater management

- Storm Servicing Master Plan
- Stormwater Design Criteria and Procedural Manual
- Urban Forest Best Practice Guide

Objectives and Deliverables

Objectives

Design and **size Green Infrastructure appropriately** for sites to meet a selected **SWM criteria**, calculate the **cost of implementation**, and test the **performance** of the site design for future **climate change** scenario.

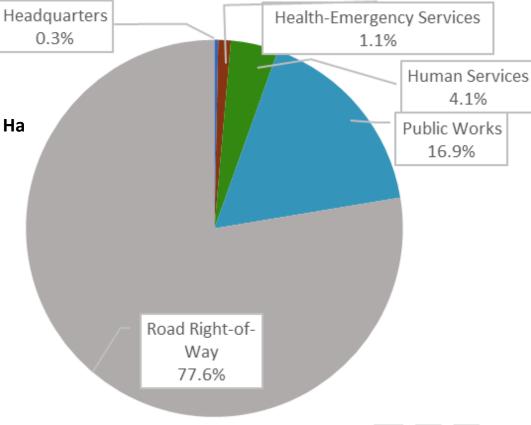
Key Deliverables

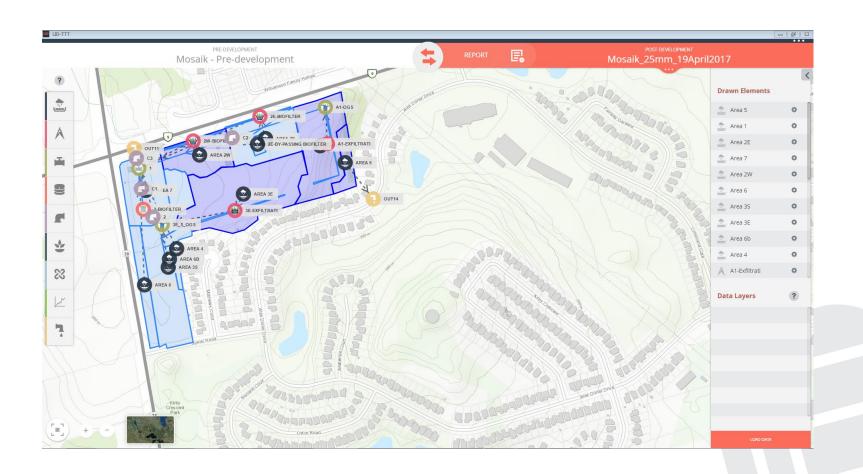
- 1. Inventory land assets
- 2. Model Base/GI stormwater management + Current/Future climate
- 3. Estimate costs of GI

Inventory of RoP's Land Assets

Human Services - 92 Ha
Child Care
Social Housing
Shelters

Headquarters – 7.5 HaAdministration Offices


Health/Emergency Services – 24 Ha
Paramedics
Long Term Care
Police


Public Works Facilities – 382 Ha
Public Works Facility
Water Storage Buildings
Water Treatment Plants
Sewage Treatment Plants

Road Right of Way – 1752 Ha Regional Roads Regional Road Sidewalks & Medians

LID Treatment Train Tool (Free)

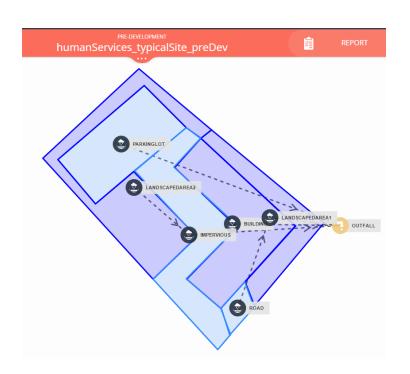
lidttt.sustainabletechnologies.ca

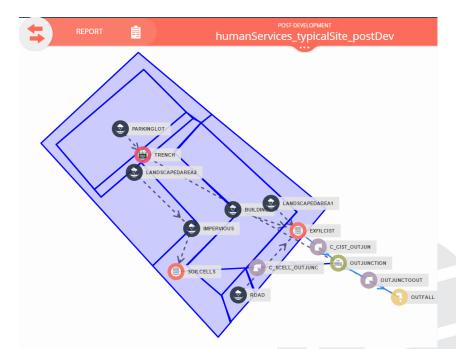
Typical Site Summaries

Typical Site Summary – Human Services

Site Characteristics		
Median site size	0.88 hectares	
Soil type	Clay loam	
Type of use	Medium-high density housing, shelters, and child care	

Land cover type breakdown		
Building	22%	
Parking Lot	16%	
Roads	4%	
Other Impervious	22%	
Pervious	36%	





GI/ Site Design Considerations

- Maintain current functionalities of the site
- Site should mimic natural hydrologic processes
- Satisfy SWM criteria: retain 90th percentile storm (27 mm)
- Cost conscious but explore various GIs

Pre – to Post – Green Infrastructure

Human Services – SWM Results

Opportunities Assessed

Infiltration trenches

Tree planting with soil cells

Downspout disconnect to perforated cistern

Results

Stormwater Outcomes	27mm - Baseline	27mm- Gl	CC (34mm)+ Baseline	CC (34mm) + Gl
Water Quantity				
Rainfall Volume (m³)	23	38	29	98
Rainfall Reduction (%)	31%	100%	27%	94%
Water Quality – Load Reduction (%)				
Total Suspended Solids	15%	100%	16.9%	90-95%
Total Phosphorus	15%	100%	17%	90-95%

STEP's LID Life Cycle Costing Tool

Fostering Sustainability
Through Innovation

Join our eNewsletter (Privacy Policy):

✓ Subscribe

ABOUTUS

PROJECTS

LIVING LABS

EVENTS & TRAINING

NEWS

RESOURCE LIBRARY

CONTACT US

Low Impact Development Life Cycle Costs

There is increasing interest in the use of Low Impact Development practices to manage urban runoff. However, those considering implementing the practices continue to wonder how their use will affect the bottom line. In this project the capital and life cycle costs of seven Low Impact Development (LID) practices and seventeen design scenarios were evaluated based on a detailed assessment of input costs, maintenance requirements, rehabilitation costs and practice designs relevant to Canadian climates.

The LID practices evaluated include bioretention cells, permeable pavement, infiltration trenches and chambers, enhanced swales, rainwater harvesting and green roofs. Dry swales and perforated pipe systems were considered to be similar to bioretention and infiltration trenches, respectively, and therefore were not evaluated as separate practices. The savings from LID approaches associated with improved

aesthetics, air quality, community livability and other public benefits were not assessed, as these savings are best evaluated in relation to specific case study examples.

A spreadsheet decision support tool based on the cost calculations gathered during this study was developed to assist industry professionals estimate the capital and life cycle costs of site specific LID practice designs. The tool provides users with a more comprehensive understanding of all relevant costs, facilitates cost comparisons, and allows users to optimize proposed designs based on both performance and cost.

sustainabletechnologies.ca

Downloads

Assessment of Life Cycle Costs for Low Impact Development Practices Executive summary | Full report

LID Practices Costing Tool 5.6 MB

LID Practices Costing Tool (no macros) 5.5 MB

Having trouble with the tool? Click here

Please send any comments or feedback on the tool to STEP@trca.on.ca

Partners

- » Toronto and Region Conservation Authority (TRCA)
- » University of Toronto
- » Government of Canada's Great Lakes Sustainability Fund
- » City of Toronto

RSMeans -> LID Life Cycle Costing Tool

Developed With Robust Tools and Features

INFILTRATION TRENCH

USERS: Please enter information into "User Inputs" section, DO NOT LEAVE BLANK

* Purple coloured cells are model defaults and can be changed by the user.

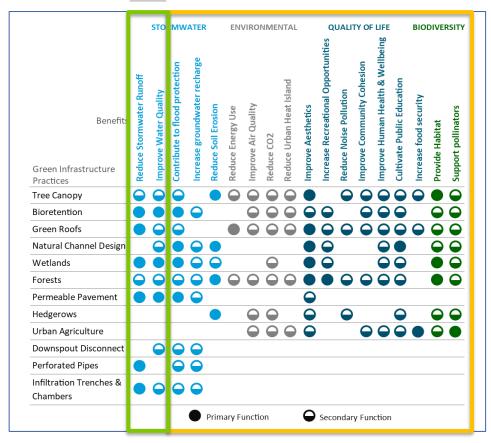
Site and Design Information

USER INPUTS				
Roof drainage area	0	m2		
Road drainage area	1630	m2		
Total drainage area (DA)	1630	m2		
Drainage type	Road Only	Unitless		
Drainage period	48	hours		
Inlet locations (manholes)	1	Unitless		
Infiltration rate of the subgrade	10	mm/hr		
Safety factor	2.5	Unitless		
Void ratio	40	%		
TOOL RESULTS				
Depth of trench 1	0.80	m		
Width of trench	5.00	m		
Length of trench	43.9	m		
Surface area of trench	220	m2		
Rainfall captured	27	mm		
Total drainage area to surface area ratio (DA:S	7.42:1	m2:m2		
Water storage volume	44.0	m3		

Notes:
¹ If the rainfall capture is adjusted from the default, the depth will not decrease below the depth required for the infiltration rate of the subgrade
² The ratio of impervious drainage area to footprint surface area of the practice should be no greater than 20:1 to limit the accumulation of fine sediments and thereby prevent clogging
² Includes compaction tests. 1 Prototo test, and 4 Nuclear Density tests repeter Acceptance respections insource me concoming openiors: upon as it values event testing: Includes 2 months of water level monitoring, materials and staff; Option #2: Simulated event testing: Includes valet touck, materials and staff, plus 2 weeks of valet level monitoring; Option #3: Continuous water level monitoring; bronchs of water level.

User Notes:			

Capital Costs I	nformation
-----------------	------------


Capital Costs Inforn	nation	Costs are 2010 inflation rate (9		13.696
PRE-CONSTRUCTION		Unit	Cost	emove Cost
Test pits (2)	3.8	m³	\$322.61	No
Infiltration tests (2 per test pit)	4	tests/pit	\$335.40	No
Stakeout of utilities	1	visit	\$568.48	No
Erosion and sediment controls	43.9	m	\$198.75	No
Add additional costs if necessary			\$0.00	
EXCAVATION				
Topsoil salvage, haul to stockpile	33.4	m ³	\$121.83	No
Excavate trench with trench box	314	m ³	\$1,568.84	No
Loading	15	/. or excavation	\$253.60	No
Hauling	5.6	hours	\$1,102.94	No
Safety Fencing	14	m (1 week rental)	\$268.53	No
Add additional costs if necessary			\$0.00	
MATERIALS & INSTALLATION				
Manhole (4' dia.) & inlet attachment	1	each	\$9,358.26	No
Geotextile (Polypropylene filtration fabric)	486	m²	\$1,934.71	No
Roof to system attachment	0	each	\$0.00	No
Hydrodynamic Separator	1	each	\$17,249.05	No
Overflow attachment	1	each	\$279.69	No
Perforated Pipe (300 mm)	43.3	m	\$1,856.38	No
Line pipe with expandable rings	41	m²	\$341.99	No
Monitoring wells (150 mm)	3	each	\$690.24	No
Place and compact stone (50 mm clear)	102.3	Bm3 & Cm3	\$4,681.98	No
Place and compact fill 3	164.7	Bm3 & Cm3	\$1,527.54	No
Add additional costs if necessary			\$0.00	
INSPECTIONS				
Construction Inspections	5	visit	1,200.44	No
Project Acceptance Inspections	1.5	visit	480.15	No
Option #2: Natural event testing	1	tests	2,273.92	No
Option #3: Simulated event testing	1	tests	2,540.44	No
Option #4: 6 months water level monitoring	1	tests	6,821.76	No
Add additional costs if necessary			0.00	
TOTALS				
Sub-total Sub-total			\$55,977.54	
Overhead	10	%	\$5,597.75	
Other	0	%	\$0.00	
GRAND TOTAL			\$61,575.29	

Human Services – GI Costs

Green Infrastructure	Capital Construction Cost (\$)	Average Annual Maintenance Cost (\$)
Infiltration Trench	\$61,575	\$2,525
Cistern	\$88,239	\$3,051
Soil Cells	\$210,000	\$1,265
Trees	\$12,000	\$2,400
Total	\$370,814	\$9,241

- 1. \$ Total /ha of Typical Site = \$/ha/Category
- 2. \$/ha/Category * ha of Category Region Wide = \$/Category
- 3. Sum \$/Category = Total Region Cost

Next Steps

- 1. Apply costs for GI into SOGR Schedule, Capital and AM Plans.
- Conduct site level feasibility studies as part of CCMP implementation.
- Integrate costing functionality within LID TTT
- Evaluate the other benefits of GI
- 5. Combine into a decision support tool for GI implementation

How is your municipality planning to increase its resiliency to climate change?

Care to continue the conversation?

Contact

Mark Pajot

Advisor, Office of Climate Change and Energy Management mark.pajot@peelregion.ca 437-998-3094

Yuestas David

Project Manager, Research and Knowledge Management
Toronto and Region Conservation Authority
yuestas.david@trca.ca
416-661-6600 ext. 5742