

Toronto's Zero Emissions Building Framework Lisa King, City Planning Division Clean Air Partnership, green Development Standards Workshop May 19, 2017

POLICY INNOVATION - Toronto Green Standard

Toronto Green Standard

Making a Sustainable City Happen

దు 💥 💥 🆓 🐯

For Mid to High-Rise Residential and Non-Residential Development

(Residential apartment buildings 4 storeys and higher and all industrial, commercial and institutional (ICI) buildings)

Version 2.0 January 2014

3 1 1

DA TORONTO

Livegreen

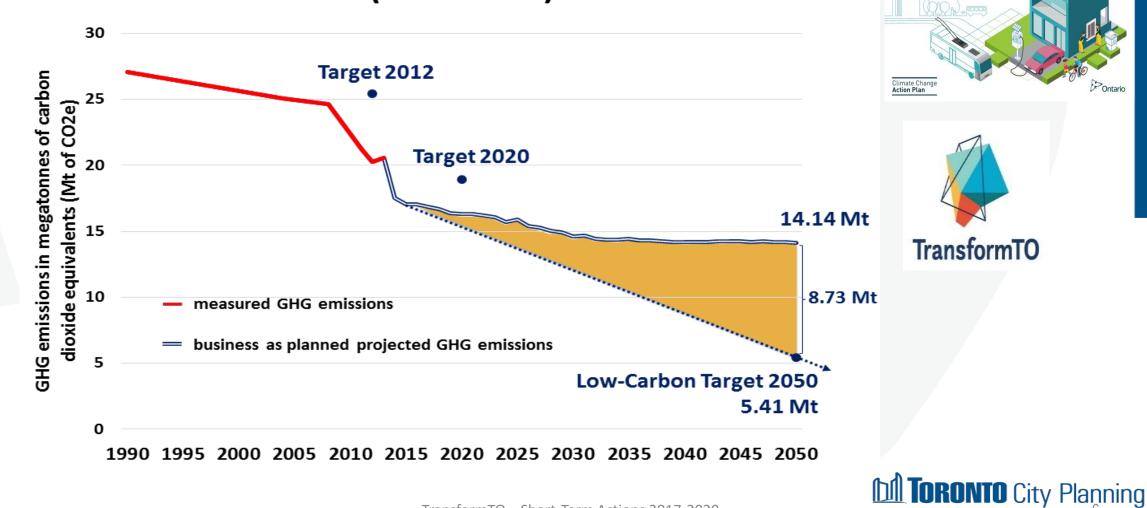
TORONTO GREEN STANDARD: Sustainable performance measures for new construction since 2010

Air Quality GHG Emissions & Energy Efficiency Water Quality & Quantity Urban Ecology Solid Waste Management

TORONTO City Planning

Current TGS V2.0 Energy Performance Package (Pt 3 buildings)

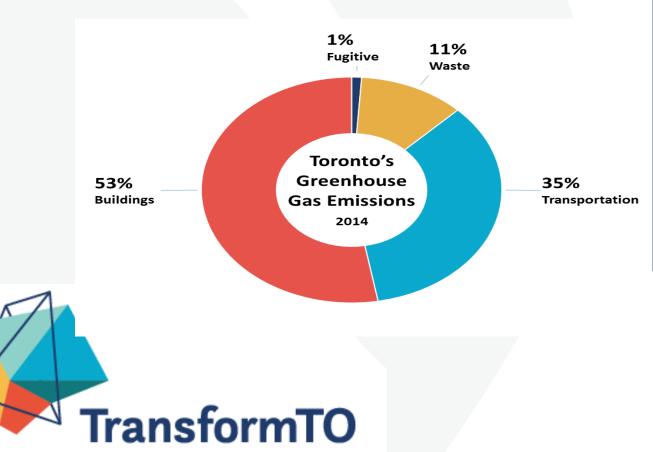
Tier 1		Tier 2		
15% above OBC 2012		25% above OBC 2012		
City buildings install renewable energy technologies that produce a minimum of 5% of the building's modelled energy use		On-site renewable energy to supply 1% (solar PV, solar thermal or wind) or 20% from ground source heat pumps		
		Best practice commissioning		
SUSTAINABLE FULLDINGS CANADA Cost/Benefit Analysis of Proposed Energy Efficiency Requirements for the Toronto Green Standard: Draft Report		Thermal metering		
SUSTANABLE BUILDINGS CANADA 33 LONGROAT AVENUE TORONTO • ON • M5A 4C9 October 2012 (ver.1)		Toronto City Plannin		


TORONTO BUILDING TRENDS

- •
- S More buildings, taller buildings No significant correlation between % improvement over OBC and reduction in GHG's
- High rates of thermal energy losses through the building envelope

Toronto's Greenhouse Gas Emissions/Targets

Measured and projected GHG emissions to 2050 (Mt of CO2)



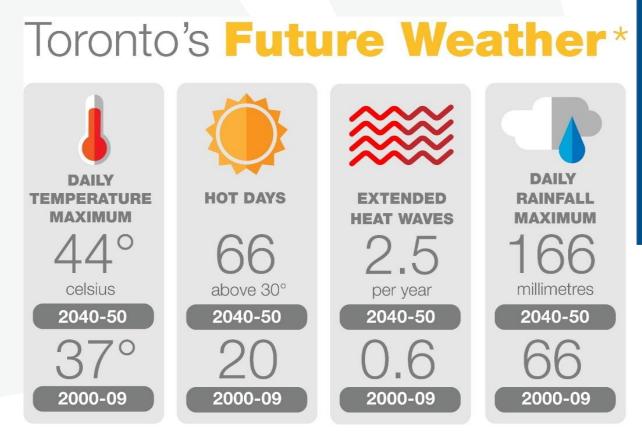
ONTARIO'S FIVE YEAR CLIMATE CHANGE ACTION PLAN

2016 - 2020

TransformTO

 TransformTO recommended 'raising the bar' on the Toronto Green Standard to achieve 2050 GHG targets (new and existing buildings)

TORONTO City Planning

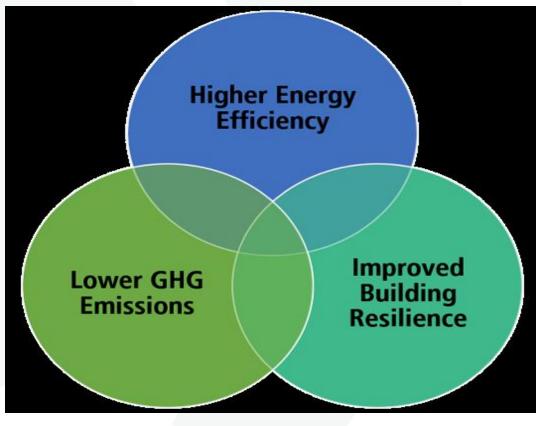

BUILDING RESILIENCE

• Toronto's Future Weather and Climate Driver Study (2011)

Flooding events

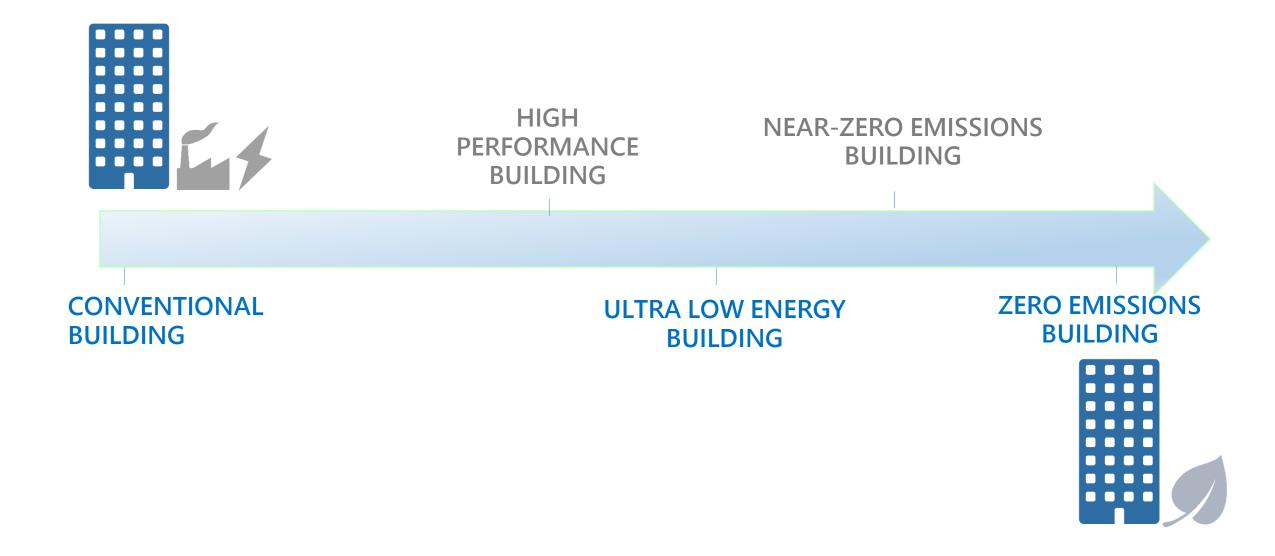
Extreme heat events

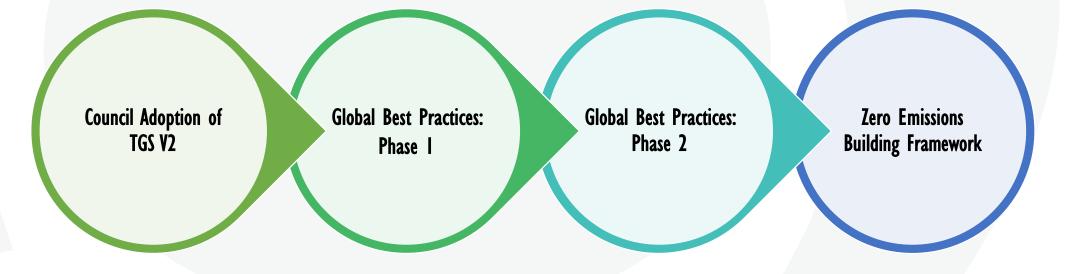
Power outages



*Source: Toronto's Future Weather and Climate Driver Study, 2011

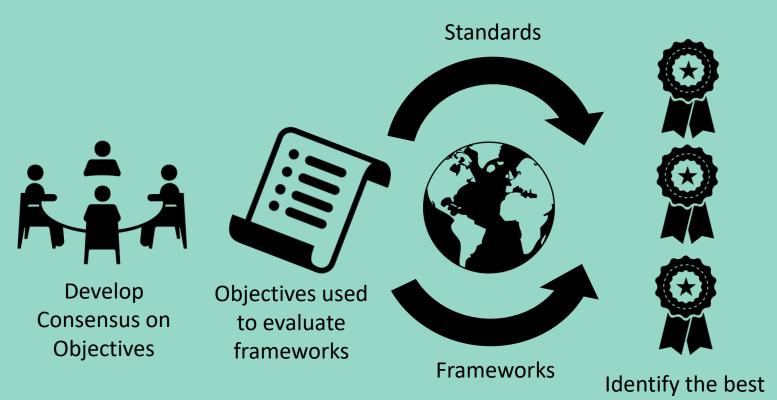
A NEW FRAMEWORK


- An increase in building **energy efficiency** to reduce overall energy demand from the built environment
- A decrease in **GHG emissions** via a shift towards the use of renewable and/or district energy as a primary source of energy for the buildings sector
- An increase in the **resilience** of the buildings sector to changing conditions and extreme events



PATHWAYS TO ZERO

UPDATE PROCESS



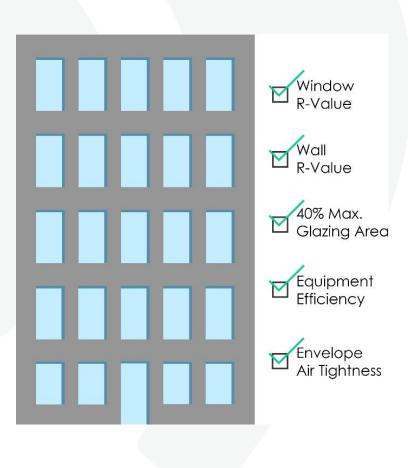
GLOBAL BEST PRACTICES IN ENERGY EFFICIENCY

Work Program

entify the best performers based on Objectives Recommendations

BESTPRACTICECOMPARISO

_		
н.		
ш.	а.	


STANDARD	COMMERCIAL	MULTI-UNIT RESIDENTIAL		
enmark uilding Regulation 10 (BR10)	Non-Residential, Offices, School, Institutions, other 71.3 kWh/yr/m2	Residential, Student Accommodation, Hotels 52.5 kWh/yr/m²		
orway ekl0	Office building 150 kWh/yr/m^2 heated floor area	Blocks of Flats 115 kWh/yr/m²		
rance egulation Thermique RT2D12	40-65 kWh/m²/yr (as per climate zone/altitude)	57.5 kWh/yr/m²		
ngland/Wales ne Building Regulations 2010 onservation of fuel and power	Meet or exceed reference building kgCO2/m2/yr with pre-defined envelope and building systems standards.	Meet or exceed reference building kgCO2/m2/yr with pre-defined envelope and building systems standards. Multi Family Housing 39 kWh/m2/yr (2016)		
ermany nergy Savings Ordinance (EnEV)	Meet or exceed reference building kWh/m2/yr with pre-defined standards.	Meet or exceed reference building kWh/m2/yr with pre-defined standards.		
alifornia tle 24, Part 6	97.7 kWh/m2/yr (Example Office Building)	88.2 kWh/m2/yr (Example Residential Tower)		
eattle EC2012 Target Performance Path	40 kBTU/sf/yr (aprox: 125 kWh/yr/m²)	40 kBTU/sf/yr (aprox: 125 kWh/yr/m²)		
assivhaus	Maximum cooling demand Maximum space heating demand Maximum total primary energy demand	15 kWh/m²/yr 15 kWh/m²/yr 120 kWh/m²/yr		
linergie	Public/Office Buildings 40 kWh/m²/yr	Multi Family Housing 60 kWh/m²/yr		

BUILDING ENERGY PERFORMANCE

Prescriptive: lists design requirements for mechanical, electrical, and envelope systems

Performance-based: focuses on overall building performance

1) Reference Building approach 2) Performance Targets approach

INTEG

PERFORMANCE APPROACHES

Reference Building

- x Limited success in reducing building energy performance over time
- x Shifting baseline can create confusion

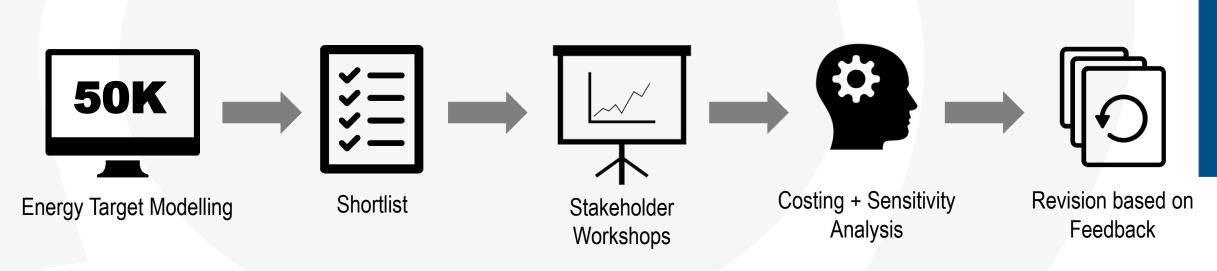
"Absolute" Performance Targets

- ✓ Correlate with better building performance
- ✓ Support straightforward comparison and review
- \checkmark Allow creativity in design

SELECTING PERFORMANCE METRICS

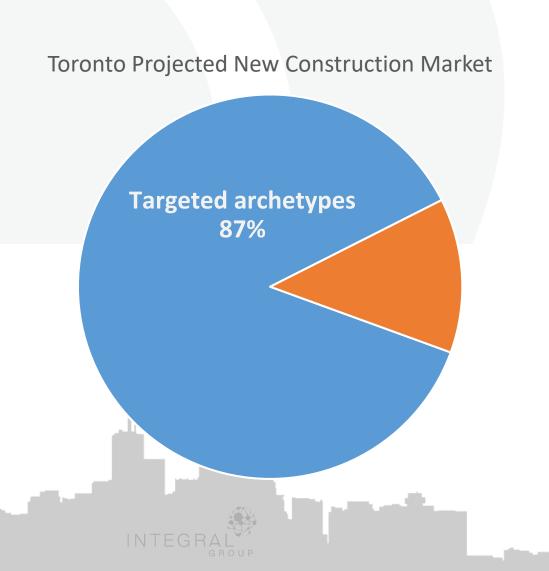
- Greenhouse Gas Intensity (GHGI) to incentivize low-carbon buildings and help meet Toronto's GHG targets
- Thermal Energy Demand Intensity (TEDI) to encourage higher quality building envelopes and improve building resilience to climate change impacts
- Total Energy Use Intensity (TEUI) to reduce overall building consumption and alleviate pressure on the grid

OTHER RECOMMENDATIONS


- ✓ Adopt a performance-based approach (GHGI, TEUI, and TEDI)
- Commit to long-term targets: 2030 Zero Emissions
- ✓ Set a predictable pathway of increasing performance over time
- Add mandatory requirements alongside targets, e.g.
 - Sub-metering protocols
 - Higher building commissioning requirements
 - Administrative requirements to verify air tightness

TORONTO'S ZERO EMISSIONS BUILDING FRAMEWORK

CONSULTATION PROCESS



TARGETS FOR TORONTO

5 building archetypes

- High Rise MURB (i.e. concrete tower)
- Low Rise MURB (i.e. 4-6 storey wood frame)
- Commercial Office
- Commercial Retail
- Residential Mixed Use

HIGH-RISE MURB

FLOOR AREA: 243,890 ft² (22,660m²) **FLOORS:** 30 X 9ft (2.74m) **OCCUPANTS**: 722 people, 301 suites

TORONTO City Planning

MEETING THE TARGETS

TIER 2

TIER 3

- \bullet > R-10 walls
- Triple glazing
- 40% WWR
- 75% efficient heat recovery

- > R-10 walls
- Triple glazing
- 40% WWR
- 80% efficient heat recovery
- Improved air tightness
- Shift to heat pumps for portion of loads

TIER 4

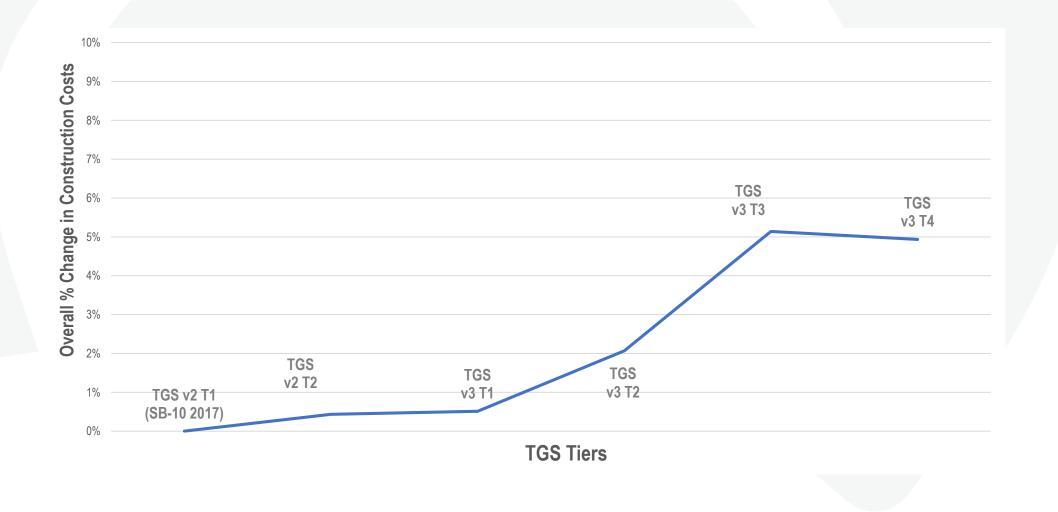
- > R-20 walls
- Passive House level windows
- 40% WWR
- 85% efficient heat recovery
- Significant reductions in electrical loads
- Removal or thermal breaking of balconies

RESILIENT BUILDINGS

- Improving resilience of building stock to
 - Future climate scenarios
 Rebound from extreme events
- **Passive survivability** refers to a building's ability to maintain critical life-support functions and conditions for its occupants during extended periods of absence of power, heating fuel, and/or water.

Thermal resilience is one dimension of passive survivability, and refers to a building's ability to maintain liveable temperatures in the event of a power outage or disruption in fuel supply for prolonged periods of time.

INTEG

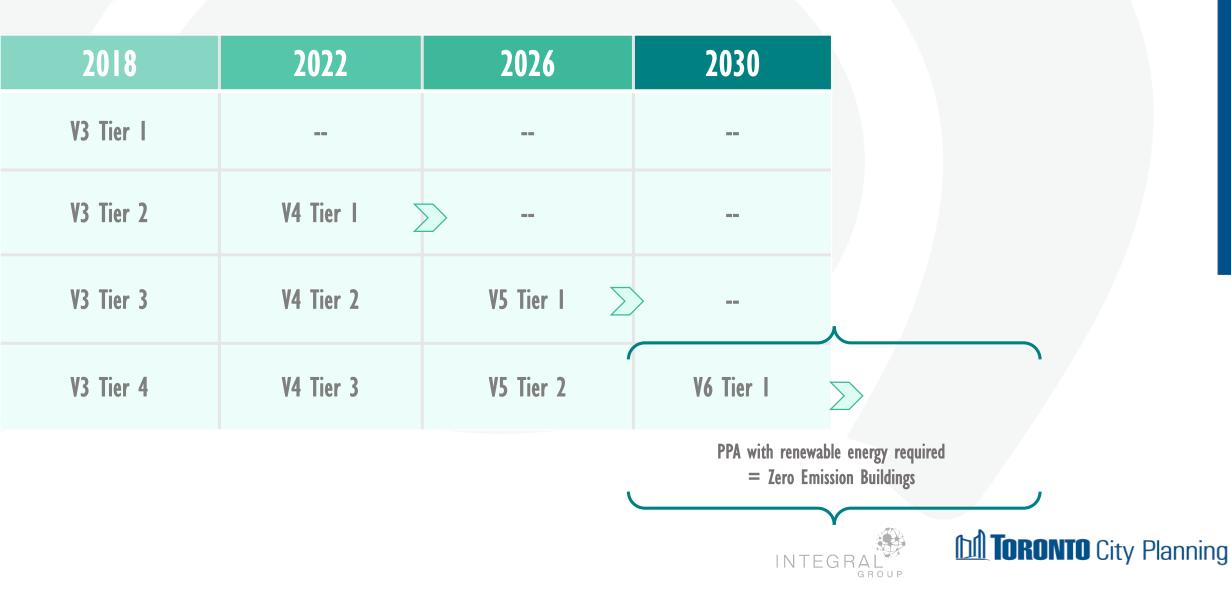

BUILDING RESILIENCE

Tier	% Energy Savings over SB-10	Peak Power (W/m2)	72h Power Off Temperature Low (°C)	2 wk Power Off Temperature Low (°C)	Emergency Fuel Factor (x baseline)
TGS v2 T1 (SB-10 2017)	-	11.1	9.9	0.9	1.0
TGS v2 T2	8%	9.7	13.5	5.8	1.2
T1	8%	9.6	13.5	5.8	1.3
Τ2	30%	9.6	14.6	7.6	1.4
Т3	35%	11.0	17.0	14.0	1.5
T4	49%	11.5	19.7	18.3	1.8

% COST PREMIUM OVER SB-10

INTEGR

GROUP

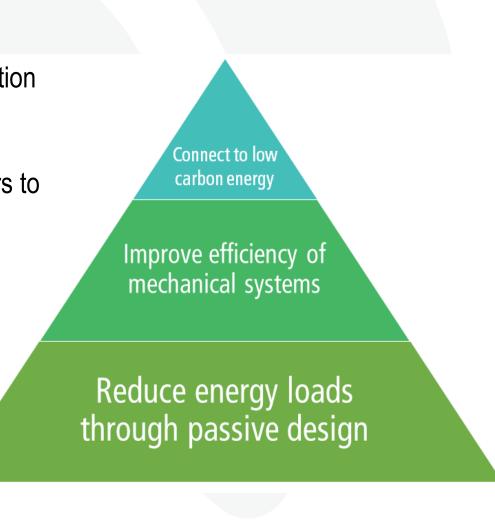

TORONTO City Planning

REVISED TARGETS

BUILDING TYPE	TIER	EUI (kWh/m²)	TEDI (kWh/m²)	GHG (kg/m²)
	T1	170	70	20
HIGH RISE MURB	T2	135	50	15
	Т3	100	30	10
	T4	75	15	5
	T1	165	65	20
4-6 STOREY WOOD FRAME MURB	T2	130	40	15
	Т3	100	25	10
	T4	70	15	5
	T1	175	70	20
	T2	130	30	15
OFFICE BUILDING	Т3	100	22	8
	T4	65	15	4
	T1	170	60	20
RETAIL	T2	120	40	10
	Т3	90	25	5
	T4	70	15	3
INTEGRAL				Toronto City Planni

.

A PATHWAY TO ZERO



IMPLICATIONS: BUILDING DESIGN

Thermal Energy Demand Intensity targets ensure prioritization is given to reducing thermal energy loads

Total Energy Use Intensity targets require building designers to achieve higher levels of overall building energy efficiency

Greenhouse Gas Intensity targets drive a shift towards lowcarbon sources of on- or off-site renewable energy

TORONTO City Planning

www.toronto.ca/greendevelopment www.toronto.ca/communityenergyplanning

Questions?

MORRISON HERSHFIELD

